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Abstract. Automated segmentation is a frequently applied task in the course of 

medical imaging. Furthermore, it is a substantial component of image-guided 

radiotherapy. Atlas based segmentation is one of the most frequently used ap-

proach for automated segmentation. Especially for multi-atlas based segmenta-

tion, segmentation quality and speed largely depends on the underlying registra-

tion and atlas selection strategy. In this work an atlas selection strategy that is 

based on the correlation of inter-atlas similarities within a set of atlas images is 

presented. Segmentation quality is analyzed by calculating dice coefficients and 

95% Hausdorff distances for the left and right parotid with respect to different 

numbers of atlases. Results are compared to other state of the art atlas selection 

strategies. It can be shown that the developed atlas selection technique performs 

slightly better than NMI-based selection if a low number of atlases is used. 
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1 Introduction 

Image segmentation is a frequently applied task in the course of medical imaging. 

There exist a variety of different segmentation approaches whereas the choice of the 

most suitable approach mainly depends on the question to be answered and on the 

underlying image data. Basically, segmentation techniques can be divided into manu-

al, semi-automated and automated approaches. Especially in radiotherapy automated 

segmentation is widely used. Automated segmentation is a substantial component of 

image-guided radiotherapy (e.g. for segmentation of organs at risk). In order to ac-

complish a robust and reliable automated segmentation, a priori knowledge of struc-

tures that should be segmented is necessary. In case of atlas-based segmentation this 



knowledge is available through already segmented atlas images. The segmentation of 

structures in new images is performed by registering these new images to an already 

segmented image (subject). A registration on several atlas images – also referred to as 

multi-atlas based registration - is also possible. After registration, voting schemes that 

mark single voxels as being inside or outside a segmented object are used. Due to 

high inter- and intra-subject variability of different structures, multi-atlas based seg-

mentation approaches have shown to be more accurate than single-atlas based seg-

mentation attempts [1]. Furthermore, non-systematic registration errors can be re-

duced therewith. Generally, the segmentation quality of atlas-based segmentation 

depends on the registration accuracy. In the case of multi-atlas based segmentation the 

selection of an appropriate voting strategy, but also the selection of atlases has an 

additional important influence on the segmentation accuracy. In addition, the selec-

tion of an appropriate subset of atlases can significantly improve the speed of the 

segmentation. 

A number of different atlas selection strategies have been published. In [2] Rohlfing 

et al. compared segmentation approaches based on using a single individual atlas 

image, an average shape atlas image, the most similar atlas image and the application 

of all available atlas images with subsequent multi-classifier decision fusion. Their 

results have shown that the multi-classifier approach works best in most cases. 

Aljabar et al. [3] analyzed the most common atlas selection strategies for the segmen-

tation of brain structures in MRI images. 

─ Atlas selection based on segmentation similarity: Atlas selection according to a 

ranking that results of dice overlaps between manually segmented images and atlas 

images. In fact, this is an unrealistic approach, since dice overlap is unknown when 

starting the segmentation process, but it is often used as a reference for comparison 

with other atlas selection strategies. 

─ Atlas selection based on image similarity: The similarity between new images 

and atlas images is determined by using specific image similarity metrics. Based 

on the similarity values a ranking can be built that can be used for atlas selection. 

The most common similarity metrics are: sum of squared distances, cross correla-

tion, mutual information and normalized mutual information. 

─ Atlas selection based on demographics: Atlas ranking according to non-image 

information (e.g. age or sex). 

For a test dataset of 275 datasets, atlas selection based on normalized mutual infor-

mation performed best. 

In this work a new atlas selection strategy is presented that is based on image similari-

ty. A correlation analysis is performed on inter-atlas similarities which are represent-

ed by normalized mutual information. On the basis of the results of this correlation 

analysis an atlas ranking is generated for multi-atlas segmentation. 



2 Methods 

2.1 Overview 

The basis is an atlas database that is comprised of 18 rigidly registered CT datasets 

with manually segmented contours of the left and right parotid. In a first step image 

similarity based on mutual information between all pairs of atlases is calculated. Then 

the correlation between the resulting similarity values of each atlas to all remaining 

atlases of the test dataset is determined. Subsequently, an atlas ranking is built from 

the correlation values for each atlas which is used for atlas selection. After performing 

deformable B-Spline registration of all selected atlases to the new image, the label 

fusion approach proposed by Peroni [4], which is based on the method presented by 

Sabuncu [5] was applied to obtain a final registration result.  

2.2 Image Similarity 

The first step in the segmentation pipeline is the calculation of image similarities be-

tween all pairs of atlases. Normalized mutual information (NMI) is used as image 

similarity metric. MI is an entropy-based measure and it is based on the assumption 

that two images have statistical dependencies. MI expresses how much the uncertain-

ty of one image decreases if the other image is known. MI is defined as [6]: 
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H(A) and H(B) is the Shannon entropy of image A and B, respectively. H(A,B) is the 

joint entropy of the two images. In order to achieve overlap invariance normalized 

mutual information is used. NMI is defined as: 
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2.3 Atlas Selection Strategy 

Image similarities based on NMI also form the basis for further analysis which leads 

to the ranking of atlas images for a new image to be segmented.  

Commonly, NMI-based selection approaches for multi-atlas based segmentation are 

based on similarities (expressed by NMI) between the new image to be segmented 

and all other atlas images. In the newly developed approach, these similarities also 

form the first column and row of a selection matrix S. In addition, the similarities 

among all atlas images based on NMI values are used and entered into matrix S (see 

also Figure 1). Based on the Pearson correlation (Figure 1: last row) of inter-subject 

NMI values (=column 1 of matrix S and columns 2..n (n=number of atlases)) a rank-

ing for all atlases can be obtained (rows containing empty matrix entries were not 

taken into account for the calculation of the correlation). By this means, not the direct 

similarity between two images (in this case new image and atlas image), but the rela-



tionship (in terms of image similarities) of an image to an ensemble of other (atlas) 

images is used to find most appropriate atlases. Note, that in the presented approach 

NMI calculation was restricted to a three dimensional box like region around the pa-

rotid glands in the respective CT images. Furthermore, only voxels within a greyscale 

range of -200 to +200 were used for NMI calculation (the choice of these threshold 

values is based on statistics concerning voxel intensities within the parotid gland and 

surrounding soft tissue). Based on these facts and due to the underlying implementa-

tion of NMI calculation in the “Insight Segmentation and Registration Toolkit (ITK) 

[7]” the selection matrix S is not symmetric.  

 

 

Fig. 1. Creation of the selection matrix S and calculation of Pearson correlation. (NI – New 

Image)  

2.4 Evaluation Strategy 

In order to evaluate the segmentation results of the developed approach the results 

were compared with the following atlas selection strategies: 

─ Atlas selection based on direct image similarity: According to NMI values be-

tween the datasets a ranking was generated. This selection approach is common 

and widely used. 

─ Oracle selection: The dice values after segmentation were used to build an atlas 

selection ranking. In reality this configuration is not possible, however, for testing 

purposes it is often used as a reference. 

Besides the order of the atlas ranking, the number of the used atlases was also ana-

lyzed. Therefore segmentations with 3, 5, 7, 9, 11, 13 and 15 atlases were performed. 

A leave-one-out strategy was used to evaluate and compare the different atlas selec-

tion approaches. For each subject, the remaining subjects were considered as potential 

atlases. The dice coefficient was used to quantitatively evaluate the segmentation 

accuracy. Hence, the overlap of segmented structures within the images can be ana-

lyzed. The dice coefficient is defined as [8]: 
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A and B are labeled regions that are compared. Volumes are represented by the num-

ber of voxels. Furthermore, the 95% Hausdorff distance was also used for the anal-

yses. Commonly Hausdorff distance is defined as [9]: 
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|| . || is a norm on the points of A and B. In contrast to the calculation of the maximum 

Hausdorff distance, 95% Hausdorff distance is based on the calculation of 95
th

 per-

centile of the Hausdorff distance. 

The average dice coefficients and the average 95% Hausdorff distances of the leave-

one-out strategy were calculated with respect to a varying numbers of atlases. 

2.5 Data and Tools 

The atlas database consists of 18 subject’s CTs of the head and neck. All images have 

a voxel size of 0.539 x 0.539 x 2.5 mm and a dimension of 512 x 512 x 89 slices. Left 

and right parotids were manually delineated by experts. 

For atlas-based segmentation the software toolkit Plastimatch was used [10]. Plasti-

match is an open source software package for image computation. It provides a so-

phisticated algorithm for multi-atlas based segmentation (MABS). All components of 

MABS can be configured separately (e.g. registration and optimization parameters). 

Hence, it is well-suited for the underlying question and the associated analyses. 

3 Results 

3.1 Average Dice Coefficient 

In Figure 2 and Figure 3 the average dice coefficient of the left and right parotid of 

the leave-one-out analysis with respect to different numbers of atlases is visualized. It 

can be seen that the average dice coefficient distinctly rises with increasing numbers 

of atlases. Starting from 11 atlases and higher a constant plateau is reached. In gen-

eral, (unrealistic) oracle selection based on dice overlap performed best for all test 

cases. For the left parotid, the new correlation-based atlas selection strategy per-

formed better than the NMI-based approach for 3, 7, 9, 11 and 15 atlases. For the 

right parotid our newly introduced method outperformed NMI for 5, 7, 9, 11, 13 and 

15 atlases. It is also obvious that the correlation-based method outperforms NMI if the 

number of atlases used is between 7 and 9. For higher numbers of atlases the NMI- 

and correlation-based approach are similarly with respect to average dice coefficient. 



 

Fig. 2. Average dice coefficient of the left parotid for different numbers of atlases. Colored bars 

represent average dice coefficient (leave-one-out approach) of different atlas selection strate-

gies. Whiskers indicate 0.95 and 0.05 percentiles. 

 

Fig. 3. Average dice coefficient of the right parotid for different numbers of atlases. Colored 

bars represent average dice coefficient (leave-one-out approach) of different atlas selection 

strategies. Whiskers indicate 0.95 and 0.05 percentiles. 

3.2 Average 95% Hausdorff Distance 

In Figure 4 and Figure 5 the average 95% Hausdorff distance of the left and right 

parotid with respect to different numbers of atlases is depicted. For the right parotid 

the new correlation-based selection strategy performs better than the NMI ranking for 

3, 5, 7, 9, 11 and 15 atlases. For the left parotid the correlation-based method outper-
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formed the NMI-based method for 3 and 11 atlases. From 13 atlases and more the 

changes of the average 95% Hausdorff distance are small. 

 

 

Fig. 4. Average 95% Hausdorff distance in mm of the left parotid for different numbers of 

atlases. Colored bars represent average Hausdorff distance (leave-one-out approach) of differ-

ent atlas selection strategies. Whiskers indicate 0.95 and 0.05 percentiles. 

 

Fig. 5. Average 95% Hausdorff distance in mm of the right parotid for different numbers of 

atlases. Colored bars represent average Hausdorff distance (leave-one-out approach) of differ-

ent atlas selection strategies. Whiskers indicate 0.95 and 0.05 percentiles. 

4 Discussion 

The application of image similarity expressed by NMI as atlas selection strategy is a 

common approach in the course of multi-atlas based segmentation. The developed 
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atlas selection strategy extends this approach by calculating the correlation of inter-

atlas similarities. By this means, atlas ranking and selection can be performed. 

The results have shown that the correlation-based selection strategy performs slightly 

better than common NMI-based selection concerning average dice overlapping. The 

average dice coefficient of the correlation-based method was higher in 11 of 14 cases. 

The advantages of the developed method are especially obvious if only a low number 

of atlases are used for segmentation/registration. This fact is of great importance if the 

speed of the segmentation is an issue. For a high number of atlases, NMI- and correla-

tion-based atlas selections perform similarly. Regarding 95% Hausdorff distance, the 

advantages of the correlation-based method were smaller. With respect to the left 

parotid, NMI-based approach had lower average 95% Hausdorff distances. However, 

when looking at the percentiles, this relativizes. For the right parotid, the new correla-

tion-based strategy had again a better performance, especially if a low number of 

atlases are used for segmentation. 

Concluding it can be said, that the developed atlas selection technique performs 

slightly better or at least equal compared to NMI-based selection. In further analyses 

special characteristics of the developed atlas selection strategy also in combination 

with other atlas selection strategies will be investigated. 
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