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Abstract. Automated segmentation is a frequently applied task in the course of
medical imaging. Furthermore, it is a substantial component of image-guided
radiotherapy. Atlas based segmentation is one of the most frequently used ap-
proach for automated segmentation. Especially for multi-atlas based segmenta-
tion, segmentation quality and speed largely depends on the underlying registra-
tion and atlas selection strategy. In this work an atlas selection strategy that is
based on the correlation of inter-atlas similarities within a set of atlas images is
presented. Segmentation quality is analyzed by calculating dice coefficients and
95% Hausdorff distances for the left and right parotid with respect to different
numbers of atlases. Results are compared to other state of the art atlas selection
strategies. It can be shown that the developed atlas selection technique performs
slightly better than NMI-based selection if a low number of atlases is used.
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1 Introduction

Image segmentation is a frequently applied task in the course of medical imaging.
There exist a variety of different segmentation approaches whereas the choice of the
most suitable approach mainly depends on the question to be answered and on the
underlying image data. Basically, segmentation techniques can be divided into manu-
al, semi-automated and automated approaches. Especially in radiotherapy automated
segmentation is widely used. Automated segmentation is a substantial component of
image-guided radiotherapy (e.g. for segmentation of organs at risk). In order to ac-
complish a robust and reliable automated segmentation, a priori knowledge of struc-
tures that should be segmented is necessary. In case of atlas-based segmentation this



knowledge is available through already segmented atlas images. The segmentation of
structures in new images is performed by registering these new images to an already
segmented image (subject). A registration on several atlas images — also referred to as
multi-atlas based registration - is also possible. After registration, voting schemes that
mark single voxels as being inside or outside a segmented object are used. Due to
high inter- and intra-subject variability of different structures, multi-atlas based seg-
mentation approaches have shown to be more accurate than single-atlas based seg-
mentation attempts [1]. Furthermore, non-systematic registration errors can be re-
duced therewith. Generally, the segmentation quality of atlas-based segmentation
depends on the registration accuracy. In the case of multi-atlas based segmentation the
selection of an appropriate voting strategy, but also the selection of atlases has an
additional important influence on the segmentation accuracy. In addition, the selec-
tion of an appropriate subset of atlases can significantly improve the speed of the
segmentation.

A number of different atlas selection strategies have been published. In [2] Rohlfing
et al. compared segmentation approaches based on using a single individual atlas
image, an average shape atlas image, the most similar atlas image and the application
of all available atlas images with subsequent multi-classifier decision fusion. Their
results have shown that the multi-classifier approach works best in most cases.
Aljabar et al. [3] analyzed the most common atlas selection strategies for the segmen-
tation of brain structures in MRI images.

— Atlas selection based on segmentation similarity: Atlas selection according to a
ranking that results of dice overlaps between manually segmented images and atlas
images. In fact, this is an unrealistic approach, since dice overlap is unknown when
starting the segmentation process, but it is often used as a reference for comparison
with other atlas selection strategies.

— Atlas selection based on image similarity: The similarity between new images
and atlas images is determined by using specific image similarity metrics. Based
on the similarity values a ranking can be built that can be used for atlas selection.
The most common similarity metrics are: sum of squared distances, cross correla-
tion, mutual information and normalized mutual information.

— Atlas selection based on demographics: Atlas ranking according to non-image
information (e.g. age or sex).

For a test dataset of 275 datasets, atlas selection based on normalized mutual infor-

mation performed best.

In this work a new atlas selection strategy is presented that is based on image similari-
ty. A correlation analysis is performed on inter-atlas similarities which are represent-
ed by normalized mutual information. On the basis of the results of this correlation
analysis an atlas ranking is generated for multi-atlas segmentation.



2 Methods

2.1 Overview

The basis is an atlas database that is comprised of 18 rigidly registered CT datasets
with manually segmented contours of the left and right parotid. In a first step image
similarity based on mutual information between all pairs of atlases is calculated. Then
the correlation between the resulting similarity values of each atlas to all remaining
atlases of the test dataset is determined. Subsequently, an atlas ranking is built from
the correlation values for each atlas which is used for atlas selection. After performing
deformable B-Spline registration of all selected atlases to the new image, the label
fusion approach proposed by Peroni [4], which is based on the method presented by
Sabuncu [5] was applied to obtain a final registration result.

2.2 Image Similarity

The first step in the segmentation pipeline is the calculation of image similarities be-
tween all pairs of atlases. Normalized mutual information (NMI) is used as image
similarity metric. MI is an entropy-based measure and it is based on the assumption
that two images have statistical dependencies. MI expresses how much the uncertain-
ty of one image decreases if the other image is known. MI is defined as [6]:

MI(A,B) = H(A) + H(B) — H(A.B) (1)

H(A) and H(B) is the Shannon entropy of image A and B, respectively. H(A,B) is the
joint entropy of the two images. In order to achieve overlap invariance normalized
mutual information is used. NMI is defined as:

H(A) + H(B)

NMI(A,B) = T B

2)

2.3  Atlas Selection Strategy

Image similarities based on NMI also form the basis for further analysis which leads
to the ranking of atlas images for a new image to be segmented.

Commonly, NMI-based selection approaches for multi-atlas based segmentation are
based on similarities (expressed by NMI) between the new image to be segmented
and all other atlas images. In the newly developed approach, these similarities also
form the first column and row of a selection matrix S. In addition, the similarities
among all atlas images based on NMI values are used and entered into matrix S (see
also Figure 1). Based on the Pearson correlation (Figure 1: last row) of inter-subject
NMI values (=column 1 of matrix S and columns 2..n (n=number of atlases)) a rank-
ing for all atlases can be obtained (rows containing empty matrix entries were not
taken into account for the calculation of the correlation). By this means, not the direct
similarity between two images (in this case new image and atlas image), but the rela-



tionship (in terms of image similarities) of an image to an ensemble of other (atlas)
images is used to find most appropriate atlases. Note, that in the presented approach
NMI calculation was restricted to a three dimensional box like region around the pa-
rotid glands in the respective CT images. Furthermore, only voxels within a greyscale
range of -200 to +200 were used for NMI calculation (the choice of these threshold
values is based on statistics concerning voxel intensities within the parotid gland and
surrounding soft tissue). Based on these facts and due to the underlying implementa-
tion of NMI calculation in the “Insight Segmentation and Registration Toolkit (ITK)
[7]” the selection matrix S is not symmetric.

NI Atlas 2 Atlas 3 Atlas 4 Atlasn
NI MM MI-2 | NMINI-3 | NMINI-4 NMI NI-n
Atlas 2 | NMI 2-NI NMI 2-3 NMI 2-4 NMI 2-n
Atlas 3 | NMI 3-NI | NMI 3-2 NMI 3-4 NMI 3-n
Atlas4 | NMI4-NI | NMI4-2 | NMI4-3 NMI 4-n
|At|asn ‘ MM n-NI ‘ NMI n-2 | NMI n-3 ‘ NMI n-4 ‘ I:’
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Fig. 1. Creation of the selection matrix S and calculation of Pearson correlation. (NI — New
Image)

2.4  Evaluation Strategy

In order to evaluate the segmentation results of the developed approach the results
were compared with the following atlas selection strategies:

— Atlas selection based on direct image similarity: According to NMI values be-
tween the datasets a ranking was generated. This selection approach is common
and widely used.

— Oracle selection: The dice values after segmentation were used to build an atlas
selection ranking. In reality this configuration is not possible, however, for testing
purposes it is often used as a reference.

Besides the order of the atlas ranking, the number of the used atlases was also ana-
lyzed. Therefore segmentations with 3,5, 7,9, 11, 13 and 15 atlases were performed.
A leave-one-out strategy was used to evaluate and compare the different atlas selec-
tion approaches. For each subject, the remaining subjects were considered as potential
atlases. The dice coefficient was used to quantitatively evaluate the segmentation
accuracy. Hence, the overlap of segmented structures within the images can be ana-
lyzed. The dice coefficient is defined as [8]:
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3)
A and B are labeled regions that are compared. Volumes are represented by the num-
ber of voxels. Furthermore, the 95% Hausdorff distance was also used for the anal-
yses. Commonly Hausdorff distance is defined as [9]:

HD (A, B) = max(h(4, B),h(B,A)) 4)
where
h(4,B) = maxmin||a — b]| 5)

|| . || is a norm on the points of A and B. In contrast to the calculation of the maximum
Hausdorff distance, 95% Hausdorff distance is based on the calculation of 95" per-
centile of the Hausdorff distance.

The average dice coefficients and the average 95% Hausdorff distances of the leave-
one-out strategy were calculated with respect to a varying numbers of atlases.

2.5 Data and Tools

The atlas database consists of 18 subject’s CTs of the head and neck. All images have
a voxel size 0f 0.539 x 0.539 x 2.5 mm and a dimension of 512 x 512 x 89 slices. Left
and right parotids were manually delineated by experts.

For atlas-based segmentation the software toolkit Plastimatch was used [10]. Plasti-
match is an open source software package for image computation. It provides a so-
phisticated algorithm for multi-atlas based segmentation (MABS). All components of
MABS can be configured separately (e.g. registration and optimization parameters).
Hence, it is well-suited for the underlying question and the associated analyses.

3 Results

3.1  Average Dice Coefficient

In Figure 2 and Figure 3 the average dice coefficient of the left and right parotid of
the leave-one-out analysis with respect to different numbers of atlases is visualized. It
can be seen that the average dice coefficient distinctly rises with increasing numbers
of atlases. Starting from 11 atlases and higher a constant plateau is reached. In gen-
eral, (unrealistic) oracle selection based on dice overlap performed best for all test
cases. For the left parotid, the new correlation-based atlas selection strategy per-
formed better than the NMI-based approach for 3, 7, 9, 11 and 15 atlases. For the
right parotid our newly introduced method outperformed NMI for 5, 7, 9, 11, 13 and
15 atlases. It is also obvious that the correlation-based method outperforms NMI if the
number of atlases used is between 7 and 9. For higher numbers of atlases the NMI-
and correlation-based approach are similarly with respect to average dice coefficient.
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Fig. 2. Average dice coefficient of the left parotid for different numbers of atlases. Colored bars
represent average dice coefficient (leave-one-out approach) of different atlas selection strate-
gies. Whiskers indicate 0.95 and 0.05 percentiles.
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Fig. 3. Average dice coefficient of the right parotid for different numbers of atlases. Colored
bars represent average dice coefficient (leave-one-out approach) of different atlas selection
strategies. Whiskers indicate 0.95 and 0.05 percentiles.

3.2 Average 95% Hausdorff Distance

In Figure 4 and Figure 5 the average 95% Hausdorff distance of the left and right
parotid with respect to different numbers of atlases is depicted. For the right parotid
the new correlation-based selection strategy performs better than the NMI ranking for
3,5,7,9, 11 and 15 atlases. For the left parotid the correlation-based method outper-



formed the NMI-based method for 3 and 11 atlases. From 13 atlases and more the
changes of the average 95% Hausdorff distance are small.
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Fig. 4. Average 95% Hausdorff distance in mm of the left parotid for different numbers of
atlases. Colored bars represent average Hausdorff distance (leave-one-out approach) of differ-
ent atlas selection strategies. Whiskers indicate 0.95 and 0.05 percentiles.
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Fig. 5. Average 95% Hausdorff distance in mm of the right parotid for different numbers of
atlases. Colored bars represent average Hausdorff distance (leave-one-out approach) of differ-
ent atlas selection strategies. Whiskers indicate 0.95 and 0.05 percentiles.

4 Discussion

The application of image similarity expressed by NMI as atlas selection strategy is a
common approach in the course of multi-atlas based segmentation. The developed



atlas selection strategy extends this approach by calculating the correlation of inter-
atlas similarities. By this means, atlas ranking and selection can be performed.

The results have shown that the correlation-based selection strategy performs slightly
better than common NMI-based selection concerning average dice overlapping. The
average dice coefficient of the correlation-based method was higher in 11 of 14 cases.
The advantages of the developed method are especially obvious if only a low number
of atlases are used for segmentation/registration. This fact is of great importance if the
speed of the segmentation is an issue. For a high number of atlases, NMI- and correla-
tion-based atlas selections perform similarly. Regarding 95% Hausdorff distance, the
advantages of the correlation-based method were smaller. With respect to the left
parotid, NMI-based approach had lower average 95% Hausdorff distances. However,
when looking at the percentiles, this relativizes. For the right parotid, the new correla-
tion-based strategy had again a better performance, especially if a low number of
atlases are used for segmentation.

Concluding it can be said, that the developed atlas selection technique performs
slightly better or at least equal compared to NMI-based selection. In further analyses
special characteristics of the developed atlas selection strategy also in combination
with other atlas selection strategies will be investigated.
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