
Extracting Intersections of Coplanar Surfaces
(Boolean-operation on touching meshes)

Release 1.00

Roman Grothausmann1

December 14, 2014
1grothausmann.roman@mh-hannover.de,

Institute of Functional and Applied Anatomy, Hannover Medical School and
REBIRTH Cluster of Excellence, Hannover, Germany

Abstract

The contribution to VTK presented in this article is specialized on the extraction of contact surfaces (CS).
This extraction can be regarded as the intersection Boolean-operation of only touching meshes. The
vtkCoplanarSurfaceExtractor filter produces either polygonal or triangulated CSs by reconstructing
the contact faces of co-planar triangles. Specified tolerances account for discrepancies in coplanarity of
faces which might occur due to rounding effects. This article is accompanied with the source code, input
data, parameters and output data that were used for validating the VTK-filter.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3504]
Distributed under Creative Commons Attribution License

Contents

1 Introduction 2

2 Installation and Usage 4

3 Usage notes 5

4 Testing 6

5 Conclusions 6

6 Acknowledgment 7

http://www.insight-journal.org
http://hdl.handle.net/10380/3504
http://creativecommons.org/licenses/by/3.0/us/

2

1 Introduction

Analyzing geometric properties of segmented regions contained in label-images is a common task in di-
gital image analysis.1 These measures always concern each label individually. However, depending on
the segmentation, for example the results of borderless watershed transforms2, labeled regions are ad-
jacent to other labels. Although the surface of each label can be determined3, a geometric property
that cannot be analyzed for each label individually is the contact surface between adjacent labels (CS).
This can be of special interest for example in biological/clinical studies to measure the contact sur-
face of adjacent organs or if blobs (cells, particles) were separated at constrictions using a watershed
transform on a distance map as in Fig. 1, see also Beare and Lehmann 2 . A simple method to mea-
sure CSs is the creation of a “lego” surface for each label (see e.g. http://www.vtk.org/Wiki/VTK/
Examples/Cxx/Medical/GenerateCubesFromLabels or Mueller 4) followed by extraction of coincident
faces of adjacent labels with e.g. vtkDistancePolyDataFilter5. However, the resulting surface area
is only a very rough estimate due to the not-smoothed discretization. Subsequent smoothing with e.g.
vtkWindowedSincPolyDataFilter to improve the result has to preserve the boundaries and is not con-
strained by the initial voxel values any more. This can falsify the results because the resulting surface will
tend to form the minimal spanning surface ot the given boundary (depending on the amount of smoothing
iterations chosen). Preserving the boundaries also means that the boundary itself will not be smoothed
yielding jagged borders. Smoothing before the extraction of coincident faces is not possible because
the smoothing process for each label will remove the face coincidence essential for the extraction. In-
stead, marching-cubes surfaces created by vtkDiscreteMarchingCubes (http://www.vtk.org/Wiki/
VTK/Examples/Cxx/Medical/GenerateModelsFromLabels) can be used because it is guaranteed to yield
CS for adjacent labels, Fig. 1. Marching cubes takes the local voxel arrangement into account and results
in 26 (33 − 1) possible face orientations (instead of just 6 for “lego” surfaces) yielding a “smoother” re-

Figure 1: Examplary touching marching cubes meshes
Two test meshes (colored magenta and cyan) originating from differently labeled but touching regions in a voxel data set. The meshes

were created by vtkDiscreteMarchingCubes. The marching cubes meshes touch each other but do not intersect because the

two labels touched each other in the voxel data set. The result of vtkCoplanarSurfaceExtractor, which extracted the parts of

the surfaces where both magenta and cyan meshes touch, is rendered in blue (faces and edges).

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3504]
Distributed under Creative Commons Attribution License

http://www.vtk.org/Wiki/VTK/Examples/Cxx/Medical/GenerateCubesFromLabels
http://www.vtk.org/Wiki/VTK/Examples/Cxx/Medical/GenerateCubesFromLabels
http://www.vtk.org/Wiki/VTK/Examples/Cxx/Medical/GenerateModelsFromLabels
http://www.vtk.org/Wiki/VTK/Examples/Cxx/Medical/GenerateModelsFromLabels
http://www.insight-journal.org
http://hdl.handle.net/10380/3504
http://creativecommons.org/licenses/by/3.0/us/

3

r

rb

g
gb bb

gb

rgb

Figure 2: Faces and edges of the magenta mesh rendered with transparency (and front-face culling). Additionally the result of

vtkCoplanarSurfaceExtractor is rendered in blue (faces and edges). The part of the magenta mesh whose point positions are

also found in the cyan mesh (not shown) is colored red and vice versa green.

r: faces only in red mesh; g: faces only in green mesh; b: faces only in blue mesh; rb: faces only in red and blue mesh; gb: faces

only in green and blue mesh; rgb: faces in red, green and blue mesh (only one face marked)

g

g

r
r

b b

rgb

rb

Figure 3: Different, close-up view of Fig. 2 also showing cyan mesh rendered with high transparency and back-face culling. Since

the edges of magenta mesh are rendered while those of the cyan mesh are not, the important difference concerning the CS of these

two meshes can be seen.

r: faces belonging to the red/magenta mesh but not touched by any face of the green/cyan mesh; g: faces belonging to the green/cyan

mesh but not touched by any face of the red/magenta mesh; b: faces only in the blue mesh, i.e. regions where faces of the magenta

and the cyan mesh touch (intersecting coplanar faces) but where these faces are not coincident (therefore not contained in the red

or green mesh); rb: faces only in red and blue mesh; rgb: faces in red, green and blue mesh (only one face marked)

sult still suitable for CS extraction. However, the resulting CS between two adjacent labels is not guar-
anteed to consist of coincident triangles. Therefore, extraction with vtkDistancePolyDataFilter will
not give an exact result of the CS, Fig. 2 and 3. The problem of extracting CSs in this case can be re-
garded as an intersection Boolean-operation on meshes.6 However, Boolean-operations performed by e.g.
vtkBooleanOperationPolyDataFilter are intended for intersections of meshes with volume overlaps not
just touching surfaces.5,7,8 Even implementations outside VTK, like the GNU Triangulated Surface Library
(GTS), Carve or Blender (www.blender.org), have problems with these special cases.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3504]
Distributed under Creative Commons Attribution License

www.blender.org
http://www.insight-journal.org
http://hdl.handle.net/10380/3504
http://creativecommons.org/licenses/by/3.0/us/

4

Figure 4: Test triangles in 3D
First input data set rendered in transparent green, second input data set in transparent red. Note that the triangles do not lie within

the same plane in 3D, the red ones do not even touch. The output of vtkCoplanarSurfaceExtractor is colored blue with black

edges using vtkConvexHull2D on the lower left, on the right vtkDelaunay2D consisting only of triangles (note the black line in the

quad). The input data was created with Blender.

The contribution to VTK presented in this article is specialized for the extraction of CSs. The
vtkCoplanarSurfaceExtractor produces either polygonal or triangulated CSs by reconstructing the con-
tact faces of co-planar triangles. Specified tolerances account for discrepancies in coplanarity of faces which
might occur due to rounding effects of point coordinates. Fig. 4 shows two input meshes consisting only
of very few triangles in 3D (i.e. not all contained within the same plane) to ease visualization. One red
triangle is completely contained in a green one and the other red triangle only partially overlaps with the
other green one. The results of vtkCoplanarSurfaceExtractor are rendered in blue with black lines to
reveal triangulations, see also Sec. 2. Fig. 5 shows some other cases that can occur.6

2 Installation and Usage

To make use of vtkCoplanarSurfaceExtractor just copy the vtkCoplanarSurfaceExtractor.cxx and
vtkCoplanarSurfaceExtractor.h into your project directory and include it in CMakeLists.txt, take the
demo program CoplanarSurfaceExtractor and CMakeLists.txt from this contribution as an example.

As of VTK-6.1.0 vtkConvexHull2D is not included within an installation1 although contained in
the folder Infovis/Core/. To include vtkConvexHull2D into the installation process add to
Infovis/Core/CMakeLists.txt under set(Module SRCS a line containing vtkConvexHull2D.cxx and
in Infovis/Core/module.cmake under DEPENDS a line with vtkRenderingCore.

As intersections of co-planar triangles are always convex, the resulting surface can be created by ei-
ther vtkConvexHull2D or vtkDelaunay2D. The difference between the two methods lies in the out-
put: vtkConvexHull2D yields vtkPolygon whereas vtkDelaunay2D returns a triangulated version of
this polygon. It is essential not to modify SetMinHullSizeInWorld(0.0) for vtkConvexHull2D in
vtkCoplanarSurfaceExtractor or the results won’t be correct, see Sec. 4 and Fig. 6. For the appli-
cation of vtkCoplanarSurfaceExtractor on marching-cubes surfaces, the guaranteed visibility of hulls
should be granted and therefore a MinHullSizeInWorld of 0.0 should lead to no problems. Setting this
property to 0.0 also makes vtkConvexHull2D perform as fast as vtkDelaunay2D in the test cases.

1This is a bug: http://www.vtk.org/pipermail/vtkusers/2014-December/089682.html

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3504]
Distributed under Creative Commons Attribution License

http://www.vtk.org/pipermail/vtkusers/2014-December/089682.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3504
http://creativecommons.org/licenses/by/3.0/us/

5

Figure 5: Coplanar test triangles, colored as in Fig. 4.

3 Usage notes

vtkCoplanarSurfaceExtractor depends on cell normals produced by vtkPolyDataNormals. The
input meshes are passed to vtkTriangleFilter because the algorithm is only implemented for
VTK TRIANGLE so far. As of VTK-6.1.0 vtkPolyDataNormals passes its cell normal computation to
vtkPolygon::ComputeNormal and that for VTK TRIANGLE to vtkTriangle::ComputeNormal imple-
mented in vtkTriangle.h which normalizes the normals with double precision. However, test showed that
removing additional calls to vtkMath::Normalize (where appropriate to avoid unnecessary computations),
caused failures for some test data sets. The problem seems to be caused by rounding errors occurring for
values very close to but outside the range [−1.0;+1.0]. Therefore, a SaveAcos() function was introduced
that handles these rounding errors. These errors are far smaller than the tolerances generally needed by
vtkCoplanarSurfaceExtractor for correct execution. Removing vtkMath::Normalize yields a speed-
up of around 4x for the test data sets.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3504]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3504
http://creativecommons.org/licenses/by/3.0/us/

6

Although VTK supports non-planar polygons, the result of e.g. a renderer in ParaView and that of
vtkTriangleFilter might differ. vtkCoplanarSurfaceExtractor expects planar polygons and does
not check this specifically, it just uses the result from vtkTriangleFilter as is.

4 Testing

The contribution comes with basic tests and some specific test data sets in testing/triangle tests
and testing/mc-surf tests. This data was also used for the figures. The test program
TestCoplanarSurfaceExtractor runs vtkCoplanarSurfaceExtractor on two input meshes and com-
pares the filter output with an expected result mesh employing vtkHausdorffDistancePointSetFilter9.
Generally, the output of vtkCoplanarSurfaceExtractor are open meshes with borders such that
a given tolerance on the Hausdorff distance seems an appropriate measure for automated test-
ing. For example, depending on the value of MinHullSizeInWorld of vtkConvexHull2D the re-
sult of vtkCoplanarSurfaceExtractor will differ, see Fig. 6. The automated tests catch this
case even though both results lie in the same plane and have the same number of points and
cells. Using vtkHausdorffDistancePointSetFilter for testing also allows to compare the output of
vtkCoplanarSurfaceExtractor with either the result of vtkConvexHull2D or vtkDelaunay2D which
(even though the surfaces are identical) generally differ in the number of cells.

5 Conclusions

In some cases it is important to extract the exact contact surfaces (CS) of two adjacent meshes, especially
when the CSs are small and not well resolved due to limited resolution of e.g. a tomogram. This extraction
can be regarded as the intersection Boolean-operation of only touching meshes. The presented contribution
of a VTK-filter vtkCoplanarSurfaceExtractor can achieve this task, as shown in some exemplary data
sets. The contribution also contains a test program, test/demo data, some test cases for the filter and an
example application.

0.062042

0.031460

0.062042

0.052987

0.013246

0.062042

0.020195

0.062042

0.051252

0.010198

Figure 6: Visualization of output discrepancies caught by the automated tests
Correct output of vtkCoplanarSurfaceExtractor rendered in gray, overlaid with the output employing vtkConvexHull2D with a

non-zero value (the default) for MinHullSizeInWorld colored according to the point-to-point distance (left) and point-to-cell (right).

The Hausdorff distance between the meshes is 0.062042. The inputs are identical to Fig. 5 bottom left.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3504]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3504
http://creativecommons.org/licenses/by/3.0/us/

7

Intersection is only one of the typical Boolean-operations on meshes.5–8 It is the only one implemented in
vtkCoplanarSurfaceExtractor because union or difference operations seem to be hardly ever needed in
the special case of purely adjacent meshes. If needed, the code of vtkCoplanarSurfaceExtractor can be
adjusted to do these operations instead.

6 Acknowledgment

Thanks go to Tobias Sargeant concerning testing of Carve for CS extraction and to the members of the
VTK-users mailing-list for their help and support.

References

[1] Gaëtan Lehmann. Label object representation and manipulation with ITK. Insight Journal, (176):1–34,
Aug 2008. URL http://hdl.handle.net/1926/584. 1

[2] Richard Beare and Gaëtan Lehmann. The watershed transform in ITK - discussion and new develop-
ments. Insight Journal, (92):1–24, June 2006. URL http://hdl.handle.net/1926/202. 1

[3] Gaëtan Lehmann and David Legland. Efficient N-Dimensional surface estimation using Crofton for-
mula and run-length encoding. Insight Journal, pages 1–11, 02 2012. URL http://www.insight-
journal.org/browse/publication/852. 1

[4] Dan Mueller. Cuberille Implicit Surface Polygonization for ITK. Insight Journal, (740), Jul. 2010. URL
http://hdl.handle.net/10380/3186. 1

[5] Cory Quammen, Chris Weigle, and Russell M. Taylor II. Boolean Operations on Surfaces
in VTK Without External Libraries. The VTK Journal, (797), March 2011. URL http:
//hdl.handle.net/10380/3262. 1, 5

[6] Honggang Qu, Mao Pan, Bin Wang, Yong Wang, and Zhangang Wang. Advances in Spatio-
Temporal Analysis, chapter Boolean operations on triangulated solids and their applica-
tions in 3D geological modelling, pages 21–28. ISPRS Book Series. CRC Press, 2007.
ISBN 9780203937556. doi: http://www.crcpress.com/product/isbn/9780415406307. URL
http://www.isprs.org/proceedings/XXXVI/2-W25/source/BOOLEAN_OPERATIONS_OF_
TRIANGULATED_SOLIDS_AND_THEIR_APPLICATIONS_IN_THE_3D_GEOLOGICAL_MODELLING.pdf.
1, 1

[7] Bryn Lloyd. Boolean Operations on Surfaces for VTK. The VTK Journal, (726), 2010. URL http:
//hdl.handle.net/10380/3169. 1

[8] Tobias Sargeant. carve, 1.4.0. URL http://carve-csg.com. code repository:
https://code.google.com/p/carve/. 1, 5

[9] Frédéric Commandeur, Jérôme Velut, and Oscar Acosta. A VTK Algorithm for the Computation of
the Hausdorff Distance. The VTK Journal, 09 2011. doi: http://hdl.handle.net/10380/3322. URL
http://www.insight-journal.org/browse/publication/839. 4

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3504]
Distributed under Creative Commons Attribution License

http://hdl.handle.net/1926/584
http://hdl.handle.net/1926/202
http://www.insight-journal.org/browse/publication/852
http://www.insight-journal.org/browse/publication/852
http://hdl.handle.net/10380/3186
http://hdl.handle.net/10380/3262
http://hdl.handle.net/10380/3262
http://www.isprs.org/proceedings/XXXVI/2-W25/source/BOOLEAN_OPERATIONS_OF_TRIANGULATED_SOLIDS_AND_THEIR_APPLICATIONS_IN_THE_3D_GEOLOGICAL_MODELLING.pdf
http://www.isprs.org/proceedings/XXXVI/2-W25/source/BOOLEAN_OPERATIONS_OF_TRIANGULATED_SOLIDS_AND_THEIR_APPLICATIONS_IN_THE_3D_GEOLOGICAL_MODELLING.pdf
http://hdl.handle.net/10380/3169
http://hdl.handle.net/10380/3169
http://carve-csg.com
http://www.insight-journal.org/browse/publication/839
http://www.insight-journal.org
http://hdl.handle.net/10380/3504
http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	Installation and Usage
	Usage notes
	Testing
	Conclusions
	Acknowledgment

