
A generic interpolator for multi-label images
Release 1.00

Joël Schaerer, Florent Roche and Boubakeur Belaroussi

Nov 24, 2014

BioClinica, Lyon, France

Abstract

We present a generic interpolator for label images. The basic idea is to interpolate
each label with an ordinary image interpolator, and return the label with the highest
value. This is the idea used by the itk::LabelImageGaussianInterpolateImageFunction
interpolator. Unfortunately, this class is currently limited to Gaussian interpolation.
Using generic programming, our proposed interpolator extends this idea to any image
interpolator. Combined with linear interpolation, this results in similar or better
accuracy and much improved computation speeds on a test image.

Contents

1 Generic label interpolation..2

2 Test using a brain classification image...2

3 Conclusions...4

Label images are an extension of binary masks, where multiple label values are used to annotate different
anatomical regions. Since averaging categorical data makes no sense, most usual interpolators do not
work out of the box for label images. As a workaround, many people have been using nearest neighbor
interpolation for this taks.

Recently, Yushkevich and Tustison [1] have proposed the
itk::LabelImageGaussianInterpolateImageFunction, which improves on nearest neighbor
interpolation. The basic idea is to interpolate each label independently as if it were a binary mask, and
return the label with the maximum interpolated value:

I(x)=arg max
L∈ labels

(I L(x))

2

Where IL is any standard image interpolator:

I L(x):ℝ3
→ℝ

This allows taking the entire neighborhood into account when interpolating, as opposed to the nearest
neighbor only. In contrast with usual iterators, it respects label values by avoiding operations such as
averaging on these values.

Unfortunately, the current implementation is limited to using the Gaussian interpolator as the underlying
interpolator. We propose to lift this restriction, allowing any ITK iterator to be used for label image
interpolation.

1 Generic label interpolation

Our itk::LabelImageGenericInterpolateImageFunction takes three template parameters: the image
type, the underlying interpolator, and (optionally), the coordinate type.

template <typename TInputImage,template<class, typename> class TInterpolator, typename
TCoordRep=double >

class LabelImageGenericInterpolateImageFunction :

 public InterpolateImageFunction<TInputImage, TcoordRep>

To avoid duplicating the image for each label, we use a LabelSelectionAdaptor which presents the
image as a binary mask for each label. To avoid race conditions in multithreaded filters, we create one
interpolator and one adaptor for each label when the image is set. Then, the
EvaluateAtContinuousFunction function calls each interpolator in turn, and returns the label which
yields the maximum value.

The itk::LabelImageGenericInterpolateImageFunction can be used as any other standard
interpolator. The only limitation is that the underlying interpolator must have exactly two template
arguments: the image type and the coordinate type. If this is not the case, it should be possible to wrap the
interpolator in another class that respects this convention. For example, for the Bspline interpolator, we
create this dummy class:

template<class TImage,typename TCoordRep> class BSplineInterpolator : public
itk::BSplineInterpolateImageFunction<TImage,TCoordRep> {};

It can then be used as follows:

typedef itk::LabelImageGenericInterpolateImageFunction<ImageType,BSplineInterpolator>
GBSInterpolatorType;

GBSInterpolatorType::Pointer gbs_interp = GBSInterpolatorType::New();

Latest version available at the Insight Journal
Distributed under Creative Commons Attribution License

http://www.insight-journal.org/
http://creativecommons.org/licenses/by/3.0/us/

3

2 Test using a brain classification image

 1. Visual assesment

To evaluate the various possible label image interpolators, we used a sample brain classification label
map, with four labels: background, cerebro-spinal fluid, gray matter and white matter. We proceed to
make it perform a full rotation around the z axis in a given number of steps, resampling the image after
each step. If the interpolator performs correctly, the final image should be in the same position as the
original image, and hopefully not too distorted. The results are the following:

Spline order was set to 3. The standard deviation for the Gaussian interpolator was set to 0.3, which was
the value found to give the best results.

As expected, vanilla linear interpolation (1-c) performs very poorly. Nearest neighbor interpolation (1-b)
respects label values, but still distorts the contours a lot. The three label image interpolators (1-d,e,f)
unsurprisingly give the best results, with a slight edge for the generic interpolator using linear
interpolation as the underlying interpolator.

Latest version available at the Insight Journal
Distributed under Creative Commons Attribution License

a) Original image b) Nearest neighbor c) Linear interpolation

d) LabelImageGaussian e) LabelImageLinear f) LabelImageBSpline

http://www.insight-journal.org/
http://creativecommons.org/licenses/by/3.0/us/

4

 2. Quantitative results

We reproduced the previously described test with 3, 5 and 7 rotation steps. To get a quantitative estimate
of each interpolator's error rate, we count the number of pixels that differ from the original image after the
full rotation. In addition to the previously shown interpolators, we add the generic label interpolator with
nearest neighbor and gaussian interopolation. The results are given in Table 1. Again, the generic label
interpolator with linear interpolation gives the best results. It also has a much faster computation time
than more complex interpolators.

As expected, the generic versions of nearest neighbor and Gaussian interpolation give exactly the same
results as the plain nearest neighbor and LabelImageGaussian interpolators, at a cost in computational
time.

3 Conclusions

We proposed a new interpolator for multi-label images, which is able to transform any image interpolator
into a multi-label image interpolator, re-using the idea from [1]. With a simple test using a sample brain
classification, we find that the new interpolator gives the best results when used with linear interpolation.
It also has a very competitive computation time.

References

[1] Yushkevich and Tustison, itk::LabelImageGaussianInterpolateImageFunction,
http://www.itk.org/Doxygen/html/classitk_1_1LabelImageGaussianInterpolateImageFunction.html

Latest version available at the Insight Journal
Distributed under Creative Commons Attribution License

Table 1: Measured accuracy and computation times for various interpolators

Interpolator Rotations # Differences # Differences (%) Computation time

Nearest neighbor interpolator 3 86376 0.79% 0.14s
Linear interpolator 3 629094 5.78% 0.20s

Label Gaussian interpolator type 3 70097 0.64% 5.10s
Generic label interpolator with nearest neighbor 3 86376 0.79% 0.71s
Generic label interpolator with linear interpolation 3 65826 0.61% 1.80s

Generic label interpolator with B-Spline 3 69088 0.64% 22.17s
Generic label interpolator with Gaussian 3 70097 0.64% 20.38s

Nearest neighbor interpolator 5 167969 1.54% 0.08s
Linear interpolator 5 862401 7.93% 0.22s

Label Gaussian interpolator type 5 131776 1.21% 9.77s
Generic label interpolator with nearest neighbor 5 167969 1.54% 1.87s

Generic label interpolator with linear interpolation 5 115469 1.06% 3.16s
Generic label interpolator with B-Spline 5 124410 1.14% 38.09s
Generic label interpolator with Gaussian 5 131776 1.21% 39.01s

Nearest neighbor interpolator 7 208304 1.91% 0.28s
Linear interpolator 7 996401 9.16% 2.48s

Label Gaussian interpolator type 7 163821 1.51% 11.29s
Generic label interpolator with nearest neighbor 7 208304 1.91% 2.69s

Generic label interpolator with linear interpolation 7 148282 1.36% 4.63s
Generic label interpolator with B-Spline 7 161522 1.48% 51.06s
Generic label interpolator with Gaussian 7 163821 1.51% 48.95s

http://www.insight-journal.org/
http://www.itk.org/Doxygen/html/classitk_1_1LabelImageGaussianInterpolateImageFunction.html
http://creativecommons.org/licenses/by/3.0/us/

	1 Generic label interpolation
	2 Test using a brain classification image
	1. Visual assesment
	2. Quantitative results

	3 Conclusions

