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Abstract

Anisotropic Non-Linear Diffusion is a powerful image processing technique, which allows to simulta-
neously remove the noise and enhance sharp features in two or three dimensional images. Anisotropic
Diffusion is understood here in the sense of Weickert, meaning that diffusion tensors are anisotropic and
reflect the local orientation of image features. This is in contrast with the non-linear diffusion filter of
Perona and Malik, which only involves scalar diffusion coefficients, in other words isotropic diffusion
tensors. In this paper, we present an anisotropic non-linear diffusion technique we implemented in ITK.
This technique is based on a recent adaptive scheme making the diffusion stable and requiring limited
numerical resources.
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1 Introduction

A digital image is usually a large two or three dimensional array of pixel values (typically scalars or vectors).
Image processing methods based on Partial Differential Equations (PDEs) regard images as approximations
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of continuous objects, namely functions from an image domain to a pixel space, to which physics-inspired
evolution rules can be applied. Among them, Non-Linear Anisotropic Diffusion (NLAD) is a variant of the
heat equation, generalized in two regards: Non-Linearity and Anisotropy.

Anisotropy in diffusion means that the smoothing induced by the PDE can be favored in some directions and
prevented in others. This is specified by local eigenvectors and eigenvalues of the diffusion tensor field (see
§2). Diffu Pieog}) nc{g%g@%ignts are thus location and direction dependent, generalizing the approach of Perona
and Malik [PMY0T which is 0n¥y location dependent. Impo Fgg%lex,b%g%c%% lect:heme?s for anisotropic diffusion
have been recently made possible by the breakthrough in [FMT13]. This has motivated the development of
the ITK module presented in this paper.

Non-Linearity in diffusion means that diffusion tqns,o&s are ggtomaticallx generated from the processed
. i . K welckertI998anisotropit, I

image. We implemented the strategies of Weickert [Wei98] and we give a simple framework for designing
extensions and variants, see §3. The implemented filters and their parameters are described in §4. Figures
2 and 3 illustrate their effect on 2D images; Figures 4 and 5 on 3D images; Figures 6 and 7 on color and

vector images.

A possible application of NLAD is to enhance a fingerprint image by smoothing tangentially to the lines.
Evidence is also plentiful for NLAD relevance in many other image processing applications, but its use has
been limited by technical aspects so far. We intend to alleviate such limitations with the present contribution.

Notations: Let d € {2,3} denote the image dimension, let Q@ C R be the image domain, and let V be the
pixel space (e.g. [0, 1] for grayscale, [0, 1]* for color, R for vectors). Throughout the paper, we informally
consider an idealized cartoon image model, involving a set I' C Q of image contours of dimension d — 1. The
processed image u : Q — V is smooth on Q \ I, but has discontinuities across I', and is overall corrupted
by e.g. by additive white noise. A key feature of NLAD is its ability to detect the set I' and smoothen
tangentially to it. Finally, let S:{ denote the collection of symmetric positive definite d x d matrices, and
let Id be the identity matrix. To each D € S} we associate the norm ||e||p := /{e, De), e € RY, where (-, )
denotes the standard scalar product on R¢.

2 Linear Anisotropic diffusion

Linear Anisotropic Diffusion' (LAD), in divergence form, is an elliptic PDE which reads
o;u = div(DVu), D

where D : Q — S is a given field of symmetric positive definite diffusion tensors. Eigenvectors of these ten-
sors define preferential diffusion directions, and the eigenvalues their corresponding coefficients. Evolution
rule (1) is complemented with an initial condition u(0,-) = ug at time # = 0. If u has pixels of vector type,
then their components are treated independently. We use Neumann? conditions on the domain boundary 0%,
as is common in image processing. LAD is formally a continuous gradient descent for the elliptic energy

Ew) = [ V00 By @)

1 - - fweickert1998anisotropic . . . o
We use here the terminology of Weickert Wel98 . Perona-Malik dl%fuswn, which uses an adaptive scalar tensor field similar
to (4), is in contrast a Non-Linear Isotropic Diffusion equation.

ZNeuman boundary conditions must take into account the geometry defined by the diffusion tensor field. They take the form
(Vu(x),D(x)n(x)) = 0, where n(x) denotes the unit outward normal at x € dQ.
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sec:NLAD

Qualitative effects of LAD strongly depend on the chosen field D of diffusion tensors. Choosing D = Id
identically on Q yields the standard heat equation, which qualitative properties are well known in image
analysis: any noise present in the image u is quickly eliminated, but in the meanwhile all image sharp
features are blurred.

This undesirable side effect can be limited with a proper choice of diffusion tensors D : Q — S:{. Indeed
LAD smoothes primarily the image features which contribute strongly to the energy (2). In the spirit of
Perona and Malik, one can introduce an isotropic but variable conductivity D(x) = ¢(x)Id, with ¢(x) < 1
for all x close to the image contours I, see introduction. Smoothing is prevented in the neighborhood of I,
which preserves the contours sharpness, but also traps some noise along them, see Figure 2 (IV). A more
elaborate approach is to construct anisotropic diffusion tensors D(x), which favor diffusion tangentially
to the contours curves I', but simultaneously prevent diffusion transversally to these curves and between
different image regions. All noise is eliminated, yet image discontinuities are preserved, see Figure 2 (II).

Numerical schemes for LAD are in general non-trivial due to interaction between the anisotropic g%%lgletr

renbach:2013ut

of the diffusion tensors, and the cartesian structure of the pixel grid. The authors recently developed [FM13]
a numerical scheme which handles this interaction using special tools from discrete geometry, named Lat-
tice Basis Reduction (LBR). It provides strong mathematical guarantees (consistency, stability, maximum-
principle) for a limited numerical cost.

3 Non-Linear Anisotropic Diffusion.

Linear Anisotropic Diffusion, discussed in §2, requires two main inputs: an image ug serving as an initial
condition, and a field of diffusion tensors. In order to reduce user input, the diffusion tensors D can be
defined in terms of the filtered image u. The resulting PDE is called non-linear anisotropic diffusion

o;u =div(D, Vu), 3)
. . . .. [Perona:1990e7]
complemented, again, with Neumann boundary conditions. Perona and Malik [PM90] suggested to use the
following non-linear isotropic (i.e. proportional to the identity matrix) tensors
1

D, (x,1) := ¢, (x,1)1d, with ¢, (x,1) := \/1 T t)Hz/W’ (G

where A > 0 is a user specified constant. Diffusion is prevented where the conductivity ¢, (x,#) is small, in
other words where ||Vu(x,7)|| is large, such as along the image contours I'. Perona-Malik diffusion is already
available® in ITK. It has been the subject of considerable academic and industrial interest revealing that, in
spite of its numerous qualities, it is mathematically ill posed, unstable, often leads to unsightly “staircasing”
visual artifacts, and is not adequate for oscillating patterns as in Figure 3.

We describe in the following Coherence Enhancing Diffusion (CED) and Edge wgenlléirel(r:%l}g 91;ggfl%%itor% ({ECED),

which are based on more complex tensor constructions introduced by Weickert [Wei98]. Our first ingredient
is the Gaussian convolution kernel: given a standard deviation ¢ > 0

1 — I/

Ks(x) := =K (g) , where Kj(x) := (271£)d exp < > ) . %)

= od

The structure tensor S, : Q — S:{, defined below, is a robust estimator of the gradient direction in an image
u, even if this image has oscillating textures. It depends on two small positive parameters: the noise scale G,

3Undm¢henanm(nﬂﬂemﬂng\vﬁhourconvenﬁonﬁ itk::GradientAnisotropicDiffusionImageFilter.
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and the feature scale p. We denote by * the convolution operator, and by v®v = w1 the self outer product,
which yields a semi-definite symmetric matrix.

Su = Kp * (VMG & VuG)a where Us = KG *U. (6)

If u is an image with vector pixels, then S, is the sum of the structure tensors associated to the components

of u. Assume that u is a scalar image, fix a time 7 and a point x € Q, and denote S := S, (x,?), v := Vu(x,1).

Let also A; < --- < Ay denote the eigenvalues of S, sorted by increasing magnitude, and ej,---,e; the

corresponding unit eigenvectors. If u is sufficiently smooth, then the largest eigenvalue approximates the

gradient squared norm: A4 = ||v||?, while the corresponding eigenvector approximates the gradient direction:
)4

eq =~ :l:w

Weickert’s diffusion tensors D := D, (x,7), are defined in terms of this eigen-analysis of the structure tensor
S:=Su(x,1):

D= Z uie;Qe;, where §S= Z rei Qej. @)

1<i<d 1<i<d

Smoothing is promoted in the direction e; if y; is large, and prevented if y; is small, for any 1 <i < d.
Weickert’s classical constructions are presented in (8) and (11). One should not shy away of designing more
complex and application dependent variants; for instance one may want to enhance filaments and tubular
structures in 3D data. Three very simple variants (9), (10) and (12) are presented for illustration. All depend
on three parameters A, m, a.. The main one, A > 0, is an edge detection threshold. The exponent m is typically
2 or 4. The small parameter a,, typically 1/100, determines the condition number of the diffusion tensors.

e Edge Enhancing Diffusion (EED) aims to avoid significant diffusion across the set I" of image con-
tours, but to allow it anywhere else. Note that for 3D images discontinuity planes will be enhanced,
rather than edges. The first diffusion tensor eigenvalue is y; = 1, because the eigenvector e is orthog-
onal to the image (approximate) gradient direction ey, hence never transverse to I'. Other eigenvalues
satisfy y; = oo < 1 if A; —A; 2 A, and y; = 1 otherwise. The condition A; —A; = A indeed suggests
that the eigenvector e; points through an image contour. Precisely*: (note that u; = 1)

;\‘ m
,u,-::l—(l—oc)exp<— (?\.'—?\,1> ) (8)

The choice of Weickert, to set y; = 1, may lead to undesired effects: one always performs diffusion
in at least one direction. An undesirable side effect is that the image is blurred close to the angles
of its contour set I'. We believe that such salient features should be preserved, hence we introduce a
Conservative variant of EED (cEED) for which u; can be small, when appropriate, so as to prevent
diffusion around the angles of I', see Figure 8 for a comparison. Precisely

e t--aen(- (1)), 0

If all eigenvalues are set equal u; = --- = uy, then the diffusion tensors are isotropic, in other words
scalar multiples of the identity. The following isotropic variant of EED is close in spirit to the Perona-
Malik model: diffusion is prevented in the neighborhood of the image contours I', regardless of direc-
tion. This construction is implemented purely for comparison with the anisotropic ones, and does not
take advantage of the innovative numerical scheme developed by the authors

pi=1—(1—a)exp <— <£;>m> (10)

4 Actually, Weickert uses u; = 1 together with (9) for i > 1. This results in discontinuous diffusion tensors, which is not advisable
from a mathematical standpoint, hence the formula (8).
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:ationParameters‘

. . // Usage with RGB pixel type, cast to Vector
// Usage with uchar pixel type, cast to double. typedef Vector<float,3> VectorType;

typedef Image<unsigned char,3> ImageType; typedef RGBPixel<unsigned char> RGBType;
typedef Image<double,3> FPImageType; struct CastFunctorType {
typedef CastImageFilter<ImageType, FPImageType> CastFilterType; VectorType operator() (const RGBType & x){

typedef CoherenceEnhancingDiffusionFilter<FPImageType> CEDFilterType; ) VectorType result; for(int i=0; i<3; ++i) result[il=x[il; return result;}

CastFilterType::Pointer castFilter = CastFilterType::New(); gg:g:; ﬂ:g::sgﬂg??;p? gagg}%g;éType'

CEDFilterType::Pointer cedFilter = CEDFilterType: :New(); typedef UnaryFunctorImageFilter<ImageType, FPImageType, CastFunctorType> CastFilterType;
cedFilter->SetInput(castFilter->GetOutput()); typedef CoherenceEnhancingDiffusionFilter<FPImageType, float> CEDFilterType;

Figure 1: The provided filters expect image pixels of scalar or vector pixel type. A preliminary cast is re-
quired for integral pixel types (left), or non-Vector pixel types such as RGB (right). The provided executable
(or “.cxx” file) performs these casts automatically.

e Coherence Enhancing Diffusion (CED) prevents diffusion except along local image structures which
have a coherent direction. The diffusion tensor eigenvalues satisfy y; ~ o0 < 1, unless if Ay —A; = A in
which case u; = 1. The condition A; —A; = A indeed suggests that e, points through an image feature,
and that e; points tangentially to it. Precisely: (note that u; = o)

}\’ m
yi::(x—l—(l—(x)exp(— <xd_}v> ) (11)

The above formula often leads to false positives: at a position with large gradients, but without a clear
preferred direction, one may very well have A; — A; > A (for instance if A; = 100A and A; = 951). A
more reliable coherence detector is A,, — A; > A+ A;, which leads to a Conservative variant of CED
(cCED), see Figure 8 for a comparison. Precisely: (note that y; = o)

AA\"
Ui ::0c+(1—0c)exp<— (Kdtl,) ) (12)

We emphasize that the distinction between EED and its conservative variant cEED (resp. CED and cCED)
is rather subtle, and mostly located around image contour corners, as evidenced on Figure 8. In other
illustrations, we only show the conservative variant, which is slightly better at preserving detail.

4 Implemented filters and their parameters

Our contribution to ITK consists of the following four image filters, which implement the mathematical
notions presented in §2 and §3. The figures are produced with the last filter, which implements CED, EED
and their variants described §3. The first three filters are its building blocks, but they may be of independent
interest for other applications. All filters are multithreaded.

For each filter, the processed image pixels can be of scalar or vector type. In the latter case, the underlying
floating point type needs to be specified via the second template parameter of the filter, see Figure 1 (bottom
right). Pixels of integral type (resp. RGB pixels) must be cast to floating point (resp. itk::Vector) types,
see Figure 1. The image dimension must be 2 or 3.

Linear Anisotropic Diffusion (LAD). Thefilter itk::LinearAnisotropicDiffusionLBRImageFilter,
requires two inputs: a processed image and a tensor image. Note that non-linear diffusion is achieved
through successive linear diffusions, over multiple small time intervals, with regularly updated
diffusion tensors. Parameters:

e MaxDiffusionTime specifies the target physical time for the LAD evolution PDE (1). The filter
has early abort options, as discussed in the next point, hence one should check the EffectiveDif-
fusionTime at termination.
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o MaxNumberOfTimeSteps, RatioToMaxStableTimeStep. Explicit numerical schemes for diffusion

are subject to a Courant-Friedrichs-Levy (CFL) condition, which limits the largest stable time
step. This time step, which depends on the input diffusion tensors, is automatically computed by
the filter, and the requested time interval [0, MaxDiffusionTime)] is split accordingly. Early abort
occurs if this splitting exceeds the specified MaxNumberOfTimeSteps.

Structure tensor. Filter itk::StructureTensorImageFilter. Parameters:

e NoiseScale G, and FeatureScale p, see (6). Suggested ranges: 6 € [0.5,3], A € [2,10], assuming

a unit pixel spacing. The lower bounds of these intervals are recommended, unless noise is
extremely strong.

RescaleForUnitMaximumTrace. If on, the structure tensors are rescaled: S, = a.S,,, where o, > 0
is the largest constant such that Trace(S,,(x)) < 1 for all x € Q. (The trace is the sum of the
eigenvalues A; + - - - + Ay, see (7).) This option is meant to ease the choice of the edge detection
threshold A in CED, EED. One may want to check the variable PostRescaling = o at termination.

Non-Linear Anisotropic Diffusion (NLAD). Filter  itk::AnisotropicDiffusionLBRImageFilter.
This class (I) computes structure tensors by invoking the previous filter, (II) performs their eigen-
analysis, (III) changes them into diffusion tensors via (7), (IV) runs linear diffusion with the con-
structed tensors by invoking the first filter. After a limited number of time-steps of linear diffusion,
the steps (I-II-III-1V) are repeated so as to update the diffusion tensors, until exhaustion of the pre-
scribed diffusion time. Parameters:

DiffusionTime for which the evolution rule (3) is applied.

Adimensionize. If on, the filter ignores the image pixel spacing information, and sets on the
RescaleForMaximumUnitTrace option for structure tensor generation. This is intended to ease
the choice of DiffusionTime, and of the edge detection threshold A in CED, EED, and variants.

MaxTimeStepsBetweenTensorUpdates is self descriptive. NoiseScale and FeatureScale are
passed for structure tensor generation.

EigenValuesTransform is a virtual method used to construct the diffusion tensor eigenvalues
(4;)¢_; from those of the structure tensors (A;)¢_,, which are sorted increasingly for convenience.

i=i i=1°
The method must be redefined in a subclass, as in the next filter, else it triggers an exception.

Coherence-Enhancing diffusion and Edge-Enhancing diffusion. The two PDEs, and their variants, are
implemented in the same filter itk::CoherenceEnhancingDiffusionFilter, which subclasses
the Non-Linear Anisotropic Diffusion filter. Parameters:

Enhancement allows to switch between EED, cEED, CED, cCED and Isotropic (10) tensor
constructions, by redefining the superclass virtual method EigenValuesTransform. The relevant
choice depends on the type of image structures that one wants to enhance.

Lambda= A, Exponent= m, Alpha= o are the parameters involved in tensor design (8) - (12).

Suggested parameter ranges. Adimensionize=True. DiffusionTime € [0.5, 5], although larger
values can be relevant for very strong noise or artistic effects. Edge detection threshold A €
[1073, 5 x 1072], small for complex images with detail, large for simple “cartoon” like images.
Finally m € [2,4], o = 0.01, though these parameters are secondary and have little impact.
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Figure 2: I: Source image. II: cEED is the best pick. III: cCED only affects the directionally coherent parts,
the image region contours, which is clearly inadequate. IV: Isotropic (10, Perona-Malik like) diffusion
leaves some noise trapped along the image contours. Parameters: 7' = 20, A = 0.05, ¢ = 3, others default. fig:Pacl

Figure 3: I: Source image. II: cEED is not advised, since it blurs the junctions of the fingerprint lines. III:
cCED is the best pick, since it enhances the fingerprint lines, and does not blur the more complex regions.
IV: Isotropic (10, Perona-Malik like) diffusion either fails to remove noise, or blurs the fingerprint lines,
depending on the image region. Parameters: 7 = 20, A = 0.02, others default. fig:Finc

Figure 4: Left: Volume plot and slice of an FMRI of the human skull, with artificially added Gaussian noise
of variance 0.01 (data range: [0, 1]). In the volume plot, values below 0.08 are shown transparent. Right:
Effect of cEED. Parameters: 7 = 5, A = 0.003. fig:Skul
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Figure 5: Synthetic function cos(||x||*), x € [0, 1]3, corrupted with Gaussian noise of variance 0.5. Left: level
lines, and slice {x = 0.1}. Right: effect of CED. By construction, CED barely affects the neighborhood of
the origin (0,0,0), where no specific coherent direction can be determined. Parameters: 7' = 10, A = 0.02,

c=4,p=10. fig:Cos:

Figure 6: I: Detail of the Lena image. II: cEED removes noise and preserves most image detail. I1I: cCED
enhances the flow structure of the hat plumes, without much affecting the rest of the image. In particular
it does not remove noise. 1V: Isotropic diffusion (10, Perona Malik like) removes noise in the interior
of the image regions, but leaves some noise close to image contours such as the border of Lena’s cheek.

Parameters: 7 = 2, A = 0.003, m = 4, others default. fig:Lene
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Figure 7: Left: Directions and norms (black=0, white=1) of the vector field v(x) := sign(||x|| — 1) x*/||x|| on
[—1.3,1.3]?, degraded by gaussian noise of variance 2, on a 50 x 50 grid. Norms of these vectors (black=0,
white=1). Right: Effect of cEED. Note that the streamlines are better reconstructed, and that the norms
vanish along the (approximate) circle ||x|| = 1 where v(x) changes sign so that there is a cancellation effect
(and likewise close to the vector field singularity at the center). Parameters: T = 10, A = 0.05, others default. | fig:Vect
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Figure 8: Left: (I) source image, (II) effect of cEED, (III) effect of EED. Note that the triangle corners
are better preserved with cEED. Parameters: T =5, A = 0.03. Right: (I) source image, (II) effect of cCED,
(III) effect of CED. Note that cCED better preserves contrast along where the two fronts meet. Parameters:

T =20, A=0.05. fig:Trie
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