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Abstract

Although phase data can take on any value, it is generally only possible to measure phase as a
principle value, i.e., wrapped within the range (−π,π]. Determining the unwrapped phase from its prin-
ciple value is a topic of considerable interest in magnetic resonance imaging (MRI), as well as many
non-medical disciplines. Despite their importance in image analysis, filters for manipulating phase in-
formation have not been incorporated into ITK. This article introduces the ITKPhase module, containing
filters useful for understanding, analyzing, and unwrapping n-dimensional phase data, and also serves as
a practical introduction to phase unwrapping.
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1 Background

1.1 Theory

Data collected via magnetic resonance (MR) imaging is inherently complex-valued, containing both real and
imaginary (or equivalently, phase and magnitude) components (Figure 1). Phase data is useful in a variety of
applications, such as harmonic phase (HARP) analysis of tagged MR [11], susceptibility weighted imaging
(SWI) [10], and phase contrast angiography/venography . Although phase at a given pixel can generally
take on any value, it is impossible to distinguish between true (φ) and principal (φ̂) phase values separated
by an arbitrary multiple k of 2π, such that the measured phase value is ‘wrapped’ within the range (−π,π].
In theory, true phase may be recovered from principle phase by adding an integer multiple k of 2π, in a
process known as ‘unwrapping’ (Equation 1).

φ = φ̂+ k2π (1)

φ̂

a

b
R

Real

Imaginary

Figure 1: The Complex Plane. Here a complex number, z, is represented as a point on the complex plane. z can be
represented equivalently in cartesian coordinates as the sum of a real and an imaginary number (z = a+bi) or in polar
coordinates as a magnitude phase pair ([R,φ]).

The reverse operation, by which principle phase is obtained from its true phase, is denoted by the wrapping
operator W (Equation 2), which can be practically implimented with the four-quadrant arctangent function
(std::atan2(x,y)).

φ̂ = arctan(sin(φ),cos(φ))≡W {φ} (2)

Itoh [9] observed that the locally ‘corrected’ phase gradient (i.e., the phase gradient after appropriate addition
of k2π such that the difference between adjacent pixels is in the range (−π,π]) may be written in terms of
the wrapping operator (Equation 3).1

1i is used in this submission both to refer to the mathematical constant meaning
√
−1, as previously, and, in this context, to

pixel index along an arbitrary dimension (0 < i < M−1, where M is the number of pixels along that dimension). The difference in
usage should be clear from context. Note also that the above definition only applies when both i and i−1 are completely within the
image; otherwise, ∆φi ≡ 0.
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1.2 Introduction to the ITKPhase Module 4

(a) (b) (c) (d)

Figure 2: Simulated phase images, created by the itk::PhaseExamplesImageSource class. Wrapped phase ramp
(2a); wrapped phase ramp with noise patch (2b); unwrapped phase ramp (2c); unwrapped phase ramp with noise patch
(2d).

∆φi ≡W
{

φ̂i−φi−1
}

(3)

A target pixel (φi) may be ‘unwrapped’ relative to an adjacent reference pixel (φi−1) such that their difference
is in the range (−π,π]. This operation can be written in terms of the wrapped phase gradient (Equation 4).

φi = φi−1 +∆φi (4)

1.2 Introduction to the ITKPhase Module

The presented module provides the unary wrap operator as a functor, itk::Functor::WrapPhaseFunctor
(defined in itkWrapPhaseFunctor.h). The following snippet demonstrates the basic use of the class.2

itk::Functor::WrapPhaseFunctor< double > wrapFunc;

std::cout << wrapFunc( 3 ) << std::endl; // 3
std::cout << wrapFunc( 0 ) << std::endl; // 0
std::cout << wrapFunc( -3 ) << std::endl; // -3
std::cout << wrapFunc( 1 + vnl_math::pi ) << std::endl; // -2.14159
std::cout << wrapFunc( -vnl_math::pi - 1 ) << std::endl; // 2.14159

itk::PhaseImageToImageFilter (defined in itkPhaseImageToImageFilter.h) inherits from
itk::ImageToImageFilter and serves as the base class for most classes in this module.

This class provides two methods, Wrap(pixel) and Unwrap(target,relativeToReference). The first
takes one argument and provides an interface to WrapPhaseFunctor (see Equation 2). The second makes
use of the first to unwrap one pixel relative to another (see Equation 4).

For convenience, the ITKPhase module also includes itk::PhaseExamplesImageSource (defined in
itkPhaseExamplesImageSource.h), which provides simple simulated phase examples for demonstrating
the functionality of the module’s classes.

2The constant vnl math::pi is defined in the vnl/vnl math.h header file. std::cout and std::endl are defined in the
<iostream> header file.
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1.2 Introduction to the ITKPhase Module 5

By default, the class outputs a simple, wrapped phase ramp (Figure 2, far left).3

typedef itk::PhaseExamplesImageSource< WorkImageType > ExampleType;
ExampleType::Pointer phase = ExampleType::New();
phase->Update();

A patch of additive gaussian noise can be added by calling phase->SetNoise(true) (Figure 2, center
right), and unwrapped versions of these images can be obtained by calling phase->SetWrap(false) (Fig-
ure 2, center left and far right, respectively). Though not demonstrated in this submission, the mean, stan-
dard deviation, and seed of the noise can be manually set using the SetNoiseMean(), SetNoiseSD(), and
SetNoiseSeed() methods.

3For visualization purposes, all images have been rescaled prior to writing to png.
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2 Phase Quality and Path-Dependent Unwrapping

2.1 The Itoh Phase Unwrapping Algorithm

itk::ItohPhaseUnwrappingImageFilter (defined in itkItohPhaseUnwrappingImageFilter.h) im-
plements the simplest possible phase unwrapping algorithm, proposed by Itoh [9]. In this algorithm, the
image is traversed linearly, once per image dimension, unwrapping each pixel relative to the previous pixel.
In the case of the uncorrupted, wrapped phase ramp (Figure 2, far left), the correct unwrapped image (Fig-
ure 2, center left) is obtained with one traversal along the horizontal (x) direction (identical to input, not
shown). Additionally traversing along the vertical (y) direction has no effect. This is true regardless of
which dimension is traversed first.

However, in the case of the noise-corrupted phase (Figure 3), two notable observations should be made.
First, regardless of which direction is traversed first, the original phase image is not recovered. Rather,
the noisy region causes streaks to form ‘downstream’ of the corrupted data. Therefore, the Itoh algorithm
is inadequate for unwrapping of this (and virtually all real world) data sets. Second, vertical followed
by horizontal traversal does not produce the same image as the reverse. This suggests that, whereas the
unwrapping of some images (e.g., the uncorrupted phase ramp) is path-independent, the unwrapping of
other images (e.g., the noisy-corrupted phase) is path-dependent.

(a) (b) (c)

Figure 3: Noise-corrupted phase example ramps, unwrapped via the Itoh algorithm
(itk::ItohPhaseUnwrappingImageFilter) in the horizontal then vertical directions (3b) and in the vertical
then horizontal directions (3c). The wrapped image (3a) is reproduced for comparison.

2.2 Phase Residues

In order to predict when path-independent phase unwrapping is possible, it is necessary to introduce the
concept of phase residues. A residue charge is calculated for a 2x2 neighborhood of pixels and a given
pair of dimensions, by summing the wrapped phase differences across a clockwise trajectory through the
neighborhood and dividing the result by 2π.4 Effectively, this gives the number of positive discontinuities
encountered less the number of negative discontinuities encountered (positive meaning that 2π would be
added in order to remove it).

It has been proven that all phase residues have a value in the set {−1,0,1} [2]. Take the following minimal

4We here use the clockwise convention, as presented by Goldstein, et al [7]. However, as it is only the relative sign that is
important for phase unwrapping, the clockwise/counter-clockwise convention makes no practical difference, so long as consistency
is maintained.

Latest version available at the Insight Journal [ http://hdl.handle.net/10380/xxxx]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/xxxx
http://creativecommons.org/licenses/by/3.0/us/
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example (Figure 4):5

0.0 → 0.3 → 0.3 → 0.0
↑ � ↓↑ ↓↑ ⊗ ↓

0.0 ← −0.3 ← −0.3 ← 0.0

Figure 4: Phase Residues. Phase residues are calculated by summing the wrapped phase differences in a clockwise
trajectory through a 2x2 neighborhood. A positive residue (�) is noted in the leftmost neighborhood, a negative residue
(⊗) in the rightmost neighborhood, and no residue in the central neighborhood.

The presence of one or more phase residues in a phase image denote path-dependent unwrapping. In the
above example, unwrapping along (0,0)→ (1,0)→ (1,1) produces a value of 0.7 for pixel (1,1) (−0.3+
1.0 = 0.7), whereas unwrapping from (0,0)→ (0,1)→ (1,1) produces a value of −0.3 because no phase
wraps are encountered.6 Another useful result is that the wrapped line integral around a larger neighborhood
yields the sum of the phase residues contained within that neighborhood. In this example, the line integral is
0, which rightly reflects the presence of a single positive and a single negative residue. Goldstein, et al [7],
were the first to appreciate the significance of phase residues for path-dependency of phase unwrapping, by
introducing the concept of residue ‘balancing’ for 2D phase unwrapping. They observed that, by defining
branch cuts across which phase unwrapping was disallowed (either between residues of opposing sign or
from a residue to the edge of the image), a subset of paths could be defined for which the wrapped line
integral was zero (i.e., a subset of paths, none of which enclose an unbalanced residue). Within this subset,
any path taken will arrive at an identical unwrapped solution (to an arbitrary additive multiple of 2π).

Appropriately balancing residues will ensure consistent, but not necessarily correct results [2]. All possible
paths within a specific configuration yield the same result, to an additive multiple of 2π. However, results are
not necessarily consistent between branch-cut configurations. Figure 5 illustrates this point. Two possible
branch cut configurations are shown, each with one possible phase unwrapping path. It is noteworthy that
the values of pixels (1,1) and (2,1) differ between the two configurations.

0.0 → 0.3 → 0.3 → 0.0
� — — ⊗ ↓

0.0 ← −0.3 ← −0.3 ← 0.0
(a)

0.0 → 0.3 0.3 → 0.0
↑ � ↓ ↑ ⊗ ↓

0.0 | 0.7 → 0.7 | 0.0
(b)

Figure 5: Branch Cut Configurations. The above example demonstrates two possible branch cut configurations.
Configuration (a) connects residues of opposing sign to one another. Configuration (b) connects each residue to the
image border. For each configuration, one possible unwrapping path is demonstrated. ‘—’ and ‘|’ represent vertical and
horizontal branch cuts, respectively; arrows represent the path of phase unwrapping.

It should also be noted that the branch cutting theory so far discussed in this section is specific to two
dimensional phase unwrapping. An extension of the branch cutting concept to three dimensions has been

5For simplicity of calculation, the phase has been divided by 2π such that the range is from (−0.5,0.5] and the phase residues
do not need to be rescaled.

6In accordance with ITK convention, the origin is taken to be the upper left corner of the image, and zero-indexing is used.
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proposed [8], which requires phase residues to be calculated with respect to each pair of dimensions (xy, xz,
yz). To our knowledge, the branch cutting method has not been extended to higher dimensions. We have
included a discussion of residues for completeness, and because we believe that the concepts are essential to
the understanding of path dependence. However, as our interest in this submission is with phase unwrapping
filters that may be implimented over images of arbitrary dimension, no branch cutting algorithms have been
included.

Phase residues may be calculated using the itk::PhaseResidueImageFilter class (defined in
itkPhaseResidueImageFilter.h (Figure 6). The filter inherits from itk::PhaseImageToImageFilter,
and uses the Wrap() method to calculate phase residues as described above. Note that, due to the theoretical
limitations described above, the filter only has a clear physical significance for 2D images.

Figure 6: Phase residues are calculated for the noise-corrupted phase ramp example using the
itk::PhaseResidueImageFilter class.

2.3 The Helmholtz Decomposition

Given a vector field v, if there exists some A such that v = ∇×A, then A is called the ‘vector potential’ of
v. Given that the divergence of the curl of any vector field is the zero vector, v must therefore be entirely
rotational (i.e., non-conservative):

∇ · v = ∇ · (∇×A) = 0 (5)

Likewise, if there exists some ψ such that v = ∇ψ, then ψ is called the ‘scalar potential’ of v. Given that the
curl of the gradient of any scalar field is zero, v must therefore be entirely irrotational (i.e., conservative):

∇× v = ∇× (∇ψ) = 0 (6)

In the general case, A and ψ cannot be found (that is, the general case of a vector field need not be en-
tirely rotational or irrotational). However, the Helmholtz Decomposition states that a vector field can be
decomposed into rotational and irrotational components as the sum of scalar and vector potentials:

v =−∇ψ+∇×A (7)

In the context of phase unwrapping, the Helmholtz decomposition has specific implications for path depen-
dence. In particular, the ‘path-dependent’ contribution is contained entirely within the rotational component,
and the ‘path-independent’ contribution within the irrotational component. The irrotational and rotational
components of the noise-corrupted phase ramp are shown in the left and right panels of Figure 7. Note in the
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(a) (b)

Figure 7: The itk:HelmholtzDecompositionImageFilter classe, applied to the noise-corrupted phase ramp ex-
ample. Shown are the irrotational (curl-free) component (7a), and the right panel is the rotational (divergence-free)
component (7b).

irrotational component that corruption of the original phase extends beyond the patch of noise itself, though
there are no ambiguities.

The Helmholtz Decomposition is provided in the itk::HelmholtzDecompositionImageFilter
class (defined in itkHelmholtzDecompositionImageFilter.h), which inherits from
itk::PhaseImageToImagefilter. The irrotational and rotational components may be retrieved
through the GetRotational() and GetIrrotational() methods, respectively.

The implementation of itk::HelmholtzDecompositionImageFilter takes advantage of the
fact that the irrotational component is equivalent to the unweighted, least squares solution
(itk::DCTPhaseUnwrappingImageFilter, discussed in a later section), re-wrapped into the range
(−π,π]. The rotational component may then be obtained by subtracting the irrotational component from
the original wrapped phase, and re-wrapping the result.

2.4 Phase Derivative Variance

It addition to phase residues, it is also useful to consider continuous measures of phase quality, of which the
phase derivative variance is the most commonly used. Phase derivative variance σ in a single dimension d
is the sum of squared differences of the local wrapped phase gradients (∆φi) and the mean wrapped phase
gradient (∆φ, Equation 8).

σd = ∑
i

(
∆φi−∆φ

)2 (8)

The total phase derivative variance can then be found by dividing the sum of the root variance in each
dimension by the square of the one-sided length of the neighborhood k (Equation 9). Phase derivative
variance is a convenient measure of phase quality because it (a) is easily generalized to arbitrary dimension
and (b) can be computed entirely from the phase data itself.

∑d
√

σd

k2 (9)

Phase derivative variance is an inverse measure of phase quality; i.e., a large phase derivative variance
is indicative of low phase quality. In order to be used as a quality metric, phase derivative variance is
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typically rescaled into the range [0,1] and multiplied by −1, such that brighter pixels represent higher
phase quality. This is the default behavior of itk::PhaseDerivativeVarianceImageFilter. The un-
normalized phase derivative variance can be obtained by setting SetNormalize(false). The rescaled
phase derivative variance image for the noise-corrupted phase ramp is shown in Figure 8.

Note that the patch of noise can be clearly identified in the original wrapped image, the phase residue image,
the phase derivative variance image, and the rotational component of the Helmholtz decomposition.

Figure 8: Phase Derivative Variance. Rescaled phase derivative variance for the noise-corrupted phase ramp, com-
puted with itk::PhaseDerivativeVarianceImageFilter. The patch of noise can be clearly identified as a region
of low image quality. Note that a thin black border has been added in order to allow visualization of the edge of the
image.
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3 Phase Unwrapping

3.1 Path-Following vs Minimum Norm Algorithms

Path-Following Algorithms

Phase unwrapping algorithms may be categorized as path-following or minimum norm algorithms. Path-
following algorithms generally specify one or more starting points at which the phase is considered to be
‘true.’ Residues, masks, and/or a continuous measure of phase quality may then be used to restrict or guide
the allowed path(s), along which the encountered pixels are unwrapped based on local pixel values. Because
the unwrapping operation consists entirely of adding some multiple of 2π, the resulting phase is necessarily
‘congruent’ to the wrapped phase input.

The itk::ItohPhaseUnwrapping class presented above is the simplest possible example of a path-
following algorithm. More sophisticated algorithms have been described which attempt to restrict the pos-
sible paths so as to avoid unwrapping through low-quality regions:

• Goldstein’s Branch Cut Phase Unwrapping [7]

• Flynn’s Quality-Guided Residue-Mask Phase Unwrapping [3]

• Flynn’s Minimum Discontinuity Phase Unwrapping [4]

• Quality-Guided Phase Unwrapping

While Goldstein’s and Flynn’s algorithms rely on residues, the quality-guided algorithm relies on
a user-defined quality map (such as phase derivative variance, discussed above). This distinction
is important because of the observation that residues are only physically meaningful in two dimen-
sions. Therefore, Goldstein’s and Flynn’s algorithms are only useful for two-dimensional phase un-
wrapping. Phase derivative variance and other quality measures, however, may easily be general-
ized to arbitrary dimension. Therefore, the quality-guided approach may be implemented for n-
dimensional images. For this reason, itk:QualityGuidedPhaseUnwrappingImageFilter (defined in
itkQualityGuidedPhaseUnwrappingImageFilter.h) was implimented for this submission, whereas
Goldstein’s and Flynn’s algorithms were not considered.

Minimum Norm Algorithms

The framework for the minimum Lp-norm algorithms was first presented by Ghiglia, et al, in [6]. Min-
imum norm algorithms may be subclassified according to (a) whether they take into account phase qual-
ity and (b) the exponent of the term being minimized. Weighted algorithms penalize differences in low-
quality pixels less than high-quality pixels, whereas unweighted algorithms weight differences in all pix-
els equally, regardless of quality. To give physical significance to the particular norm chosen, L0-norm
methods minimize the number of pixels that ate not congruent to the input, L1-norm methods minimize
the absolute differences, and L2-norm methods minimize the squared differences. Unweighted, minimum
L2-norm phase unwrapping may be implimented efficiently by taking advantage of the discrete cosine trans-
form (DCT). This algorithm is implemented in the itk:DCTPhaseUnwrappingImageFilter (defined in
itkDCTPhaseUnwrappingImageFilter.h).
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3.2 Quality-Guided Phase Unwrapping: Implementation Summary

The itk::QualityGuidedPhaseUnwrapping class iterates over three images: the wrapped image, the
quality image, and a binary image. A pixel in the binary image is true if the pixel has been unwrapped, or
false otherwise. Additionally, a list is maintained which contains the index and quality of all ‘candidate
pixels.’ A pixel is considered a candidate if (a) it adjoins a pixel that has been unwrapped and (b) has not
been unwrapped.

Efficiently maintaining the list of candidate pixels is of particular importance for this filter. To this end,
this submission provides the itk::IndexValuePair class (defined in itkIndexValuePair.h), which has
properties Index and Value. The class overloads the == operator such that pair1 == pair2 is true if
pair1.Index == pair2.Index is true, and overloads the > operator such that pair1 > pair2 is true
if pair1.Value > pair2.Value is true. As such, instances of this class can be stored in a std::set,
ensuring that (a) the same pixel location cannot be stored twice and (b) the pixels are sorted according to
their quality score. Therefore, an itk::IndexValuePair can be added to the list without first checking
whether it is already a member, and the highest-quality pixel can always be retrieved by selecting the last
element of the std::set.

The user sets the active index using the SetTruePhase() method. This is taken as the starting point for
iteration, and is set to be true in the binary image. itk::IndexValuePairs for the pixels plus or minus
one index in each direction are added to the list of candidate pixels. The pixel in the list with the highest
quality is unwrapped and made the active index, and the corresponding index in the binary image is set to
true. The process repeats while the list of candidate pixels is non-empty.

Once Update() has been called, the unwrapped and quality images may be retrieved via the GetPhase()
and GetQuality() methods, respectively. Currently, the filter only supports phase derivative variance as a
quality measure, though the filter could be easily extended to include others.

3.3 DCT Phase Unwrapping: Implementation Summary

The unweighted, minimum L2 norm solution is calculated efficiently in
itk::DCTPhaseUnwrappingImageFilter (defined in itkDCTPhaseUnwrappingImageFilter.h) by
taking advantage of Fourier methods for solving Laplace’s equation (4φ = 0), as described in [6].
itk::DCTPhaseUnwrappingImageFilter uses the two contributed classes itk::DCTImageFilter and
itk::DCTPoissonSolverImageFilter. We refer the reader to the Appendix for a discussion of these
classes, as they are of general interest to the image processing community, but may obscure the primary
objectives of this submission if described in full here. Briefly:

• The wrapped phase Laplacian of the input is calculated using
itk::WrappedPhaseLaplacianImageFilter (defined in itkWrappedPhaseLaplacianImageFilter.h).

• The forward DCT is taken using itk::DCTImageFilter (defined in itkDCTImageFilter.h).

• The transformed image undergoes a pixelwise modulation.

• The inverse DCT is taken.

itk::DCTImageFilter provides access to the n-dimensional real-to-real transform provided in the FFTW
library [5]. For this reason, in order to use this filter (and its dependents), ITK must be built with the cmake
variable USE FFTWD set to ON, and any project using this filter is subject to the GPL license.
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4 Clinical Examples

4.1 Susceptibility Weighted Imaging (SWI) of the Brain

SWI is an MR technique used to enhance microhemorrhage and calcification in the brain. This sequence
exploits distortion of the MR field by paramagnetic (e.g., deoxyhemoglobin) and diamagnetic (e.g., dys-
trophic calcification) compounds, requiring the combination of magnitude and unwrapped phase images.
An example of a wrapped phase image obtained from an SWI sequence is shown in Figure 9. The image is
an axial slice taken through the brain.

Figure 9: Wrapped phase data from SWI of the brain.

The itk::PhaseResidueImageFilter, itk::PhaseDerivativeVarianceImageFilter, and
itk::HelmholtzDecompositionImageFilter classes are demonstrated for the SWI data in Fig-
ure 10. The residues are almost entirely restricted to the region outside the skull. The Helmholtz
decomposition shows that, as expected, most of the information in the low-quality, residue-rich region
outside the skull is due to the rotational contribution, whereas most of the upward spike in phase in the
anterior brain tissue is due to the irrotational contribution. The phase derivative variance image shows high
quality phase data within the brain tissue and low quality data otherwise.

(a) (b) (c) (d)

Figure 10: Phase data from susceptibility weighted imaging of the brain. Shown are the residues (10a); irrotational
component (10b); rotational component (10c); and normalized phase derivative variance (10d).

We now present the results of the Quality-Guided and DCT phase unwrapping algorithms (Figure 11). The
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(a) (b) (c)

Figure 11: Phase data from susceptibility weighted imaging of the brain. Presented are the original image (11a), the
result of the quality-guided phase unwrapping algorithm (itk:QualityGuidedPhaseUnwrappingImageFilter, 11b),
and of the DCT phase unwrapping algorithm (itk:DCTPhaseUnwrappingImageFilter, 11c).

quality-guided approach (center) appears to correctly unwrap through the vast majority of the brain matter.
Upon close inspection, however, small areas of ‘roughness’ are noted in regions of the brain matter closely
correlating with residue pairs and clusters in the original image, presumably due to local noise (Figure 12).
The minimum L2-norm approach gives a smooth result throughout.

A cross-section through the vertical centerline of the image is plotted in Figure 13. The quality-guided
approach gives a congruent result throughout. The DCT algorithm follows the gradient closely, but under-
estimates the phase.
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Figure 12: Inset of the SWI residue (upper) and quality-guided phase unwrapped (lower) images. Note the regions of
minor discontinuity in the unwrapped image in regions corresponding to pairs/clusters of residues.

4.2 Harmonic Phase (HARP) Imaging of the Heart

Spatial modulation of magnetization (SPAMM) is an MRI pulse sequence which modulates the signal mag-
nitude in a periodic fashion across the plane of the image, resulting in lines of decreased signal [1]. The
phase of this magnetude modulation is a material property of the tissue, and as such remains constant over
time and with movement. Therefore, tag lines laid down in the heart at end diastole will deform along with
the heart during contraction, and so can be used to visualize cardiac deformation (Figure 14).

Harmonic phase analysis is an automated technique for calculating strain from tagged MR images [12].
Cardiac strain is calculated from “HARP” images, which are the result of filtering in the Fourier domain.
Many versions of this algorithm require that these images be unwrapped prior to strain calculation [13, 14].
SSFP, SPAMM, and HARP images at end systole and end diastole are shown in Figure 14.

The itk::PhaseResidueImageFilter, itk::PhaseDerivativeVarianceImageFilter, and
itk::HelmholtzDecompositionImageFilter classes are demonstrated for the HARP data in Fig-
ure 15.

We now present the results of the Quality-Guided and DCT phase unwrapping algorithms (Figure 16). From
the unwrapped image it is clear that the quality-guided approach gives an unsatisfactory result, with phase
wraps passing through the myocardial wall. The result of the DCT approach is smooth, but otherwise
difficult to evaluate by looking at the image directly.

A plot through the centerline of the image shows that the DCT approach is also unsatisfactory, as the gradient
differs considerably from that of the wrapped phase input.
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Figure 13: Congruence in SWI Data. The pixel intensities from the vertical centerline of the SWI image are plotted for
the unwrapped and original SWI data. Note that the quality-guided approach is congruent throughout, but contains a
discontinuity. The DCT approach is smooth throughout, but is not congruent.

4.3 A Note on Computational Speed

The itk::TimeProbe class was used to measure the excecution time for the quality-guided and L2-norm
implementations on a single-processor Ubuntu 12.0.2 virtual machine with 4GB of memory. For the SWI
data, the quality-guided and L2-norm approaches took 1.14 and 0.75s, respectively. For the HARP data, the
quality-guided and L2-norm approaches took 0.40 and 0.27s, respectively. Successive runs differed by less
than 0.01s. Therefore, the quality-guided approach took slighly less than twice as long to execute, though
this difference may be insignificant for many applications. Importantly, execution times are expected to
grow linearly with input size for the quality-guided approach and by O(n logn) for the L2-norm approach.
The quality-guided approach could be sped up by allowing for a mask that would prevent the unwrapping
of pixels outside the area of interest and the DCT approach could be sped up by taking advantage of multi-
threading. However, as has been shown, for some applications it may be necessary to incorporate the DCT
algorithm into an iterative algorithm such as preconditioned conjugate gradient weighted L2-norm in order
to achieve satisfactory results, which could negate advantages gained through multithreading.
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(a) (b) (c)

(d) (e) (f)

Figure 14: Balanced steady state free precession (SSFP) images (14a, 14d) are shown alongside corresponding
tagged SPAMM (14b, 14e) and HARP (14c, 14f) images in a canine subject. Shown are short axis, mid-ventricular
images. The upper panels were acquired at end diastole (no contraction); the lower panels were acquired at end
systole (maximal contraction). Note that circumferential shortening and radial thickening of the myocardium is apparent
by observing the deformation of the tag lines.

(a) (b) (c) (d)

Figure 15: Phase data from HARP imaging of the heart at end systole. Shown are the residues (15a), phase derivative
variance (15b), irrotational component (15c), and rotational component (15d).
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(a) (b) (c)

Figure 16: Results of the phase unwrapping algorithms. Quality guided (16b) and DCT (16c) results are presented.
The original wrapped image is also presented (16a) for comparison.

Figure 17: Congruence in HARP Data. The pixel intensities from the vertical centerline of the HARP image are plotted
for the unwrapped and original HARP data. Note that the quality-guided approach is congruent throughout, but contains
a discontinuity. The DCT approach is smooth throughout, but is not congruent.
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5 Conclusions and Future Directions

ITK is a large and powerful framework for medical (and general) image processing. However, the
lack of filters for understanding, manipulating, and unwrapping phase data is a current limitation of
the library. We have here presented an ITK module which we hope will begin to bridge that gap.
The two most significant contributions are the itk::QualityGuidedPhaseUnwrappingImageFilter and
itk::DCTPhaseUnwrappingImageFilter classes, which implement efficient n-dimensional unwrapping
algorithms. The quality-guided approach has the advantage of giving a result that is congruent to the input.
Moreover, this approach avoids low-quality phase data, given an adequate quality map. The unweighted
L2-norm approach has the advantage of giving a smooth result throughout, but is not congruent with the
input and weights all pixels equally regardless of quality.

These algorithms both gave servicable results when presented with the SWI data, which had few residues
within the region of interest, and in which the low quality data was largely relegated to the periphery.
However, both algorithms failed to produce an adequate result when presented with the more difficult HARP
image. In the case of the quality-guided approach, this is likely due to the inadequacy of phase derivative
variance as a quality map, because in HARP images phase varies quite smoothly even in regions where there
is little to no signal. In the case of the DCT algorithm, this is likely because the region of interest is relatively
small compared to the image as a whole.

In the future, it would be of great benefit to allow for other quality maps (such as maximum phase gradient,
pseudocorrelation, and user-defined masks) in addition to phase derivative variance. This would allow
for finer control over the path the algorithm takes in the case of difficult cases such as HARP images.
Additionally, it would be of benefit to implement a weighted L2-norm method, so that the DCT approach
could also exclude low-quality or uninteresting regions. Weighted L2-norm phase unwrapping algorithms
have been described which iteratively apply unweighted algorithms to weighted wrapped phase Laplacians.
The preconditioned conjugate gradient (PCG) approach in particular makes use of this method [6], and
would be an important next step in the development of this module.

This submission has also described itk::DCTImageFilter and itk::DCTPoissonSolverImageFilter,
which are efficient implementations of general-purpose utilities important in image compression, gradient
image editing, and phase unwrapping. The former is a simple wrapper to the FFTW library, allowing
for the discrete cosine transform to be integrated into an ITK pipeline. The latter makes use of the DCT
class to recover an image from its Laplacian. We refer the interested reader to the appendices for a proper
discussion.
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A Laplace’s Equation

The Laplacian operator, ∆, is defined for an n-dimensional function as the sum of its unmixed partial second
derivatives (Equation 10):

∆ f = ∇
2 f =

n

∑
i=1

δ2 f
δx2

i
(10)

In the two-dimensional case, this takes the following familiar form (Equation 11):

∆ f =
δ2 f
δx2 +

δ2 f
δy2 (11)

In the special case where ∆ f = 0, this is known as Laplace’s Equation. The discrete Laplacian may be
approximated via simple second differences. The one-dimensional second-difference operator [1 −2 1]
may be taken successively in each image dimension to produce a Laplacian image. In the two-dimensional
case, the discrete Laplacian operator is computed as follows:

0 1 0
1 -4 1
0 1 0

(12)

In ITK, the discrete Laplacian operator is provided in the itk::LaplacianOperator class, and is applied
to an image using the itk::LaplacianImageFilter class. Laplace’s equation can be solved efficiently
by means of the discrete cosine transform (DCT) [6]. In particular, the original image f can be recovered
by taking the forward DCT of the Laplacian image ∆ f , applying a pixelwise modulation, and taking the
reverse DCT on the result (Equation 13). In this equation, n is the dimension of the image, Sn is the number
of pixels across the image in direction d, and in is the pixel index in direction n.

f = DCT−1


DCT {∆ f}

N−1

∑
n=0

2cos
(

πin
Sn

)
−2N

 (13)

It is possible to formulate the problem in such a way that it can be solved with either the fast Fourier trans-
form (FFT), discrete sine transform (DST), or discrete cosine transform (DCT). The specifics of each imple-
mentation differ primarily in the steps that must be undertaken to satisfy Neumann boundary conditions. In
order to be solved with the FFT, for instance, the Laplacian must be reflected to the left and upwards (Figure
18). The DCT (also known as the ‘even’ or ‘real-to-real’ transform), however, is performed on one half of
an implicitly reflected matrix, obviating the reflection step. Though this difference is likely negligible for
an isolated 2D calculation, use of the DCT could significantly reduce memory and processing requirements
when applied iteratively or to higher dimensional data. For this reason, the DCT is prefered if available.
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Figure 18: The “cameraman” test image, reflected to the left and upwards to satisfy Neumann boundary conditions.

B Implementation and Usage

B.1 Discrete Cosine Transform

FFTW (the ‘Fastest Fourier Transform in the West’ [5]) is a library in the C programming language, which
can be made available by building ITK with the CMake variable ITK USE FFTWF or ITK USE FFTWD (sin-
gle and double precision floating point, respectively) to ON. FFTW provides a wide selection of efficient
discrete transforms, including DCT types I–IV (corresponding to ‘kinds’ REDFT00, REDFT10, REDFT01,
and REDFT11, respectively). These plans differ practically from one another in terms of inverse transforms
and normalization procedures (REDFT00 and REDFT11 are inverses of themselves, whereas REDFT10 and
REDFT01 are inverses of each other). In particular, REDFT10 and REDFT01 are known as ‘the’ forward and
reverse DCT, respectively. A real-to-real plan is constructed according to the following function definition:

fftw_plan fftw_plan_r2r(int rank, const int *n, double *in, double *out,
const fftw_r2r_kind *kind, unsigned flags);

int rank refers to the image dimension; const int *n to an array indicating the size in each dimen-
sion; double *in and double *out to input and output arrays allocated using fftw malloc, const
fftw r2r kind *kind to the type of transform that should be performed in each dimension, and unsigned
flags to instructions concerning numerical precision. The itk::Image buffers are assigned to the input
and output arrays using the GetBufferPointer() method. Each element of the const fftw r2r kind
array is set to FFTW REDFT01 in the case of the forward transform and FFTW REDFT10 in the case of
the inverse transform. The transform direction can be specified at the level of the itk class using the
TransformDirection() method. Because FFTW returns an unnormalized transform, the image is divided
by numpix*pow(2, TInputImage::ImageDimension) in the case of the inverse transform.

The provided class itk::DCTImageFilter, which inherits from itk::ImageToImageFilter, provides
a simple, templeted interface to the REDFT01 and REDFT10 plans. The following minimal example code
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(a) (b) (c) (d)

Figure 19: Simple demonstration of low-pass DCT filtering. Shown are the input image (19a), the DCT transform
(19b), the masked transform(19c), and the output image (19d).

demonstrates definition, instantiation, and usage of the class, and Figure 19 illustrates a simple low-pass
DCT filtering example (source code provided).7

typedef itk::DCTImageFilter< WorkImageType, WorkImageType > DCTType;
DCTType::Pointer dct = DCTType::New();
dct->SetInput( reader->GetOutput() );
dct->SetTransformDirection( DCTType::Forward );
dct->Update();

B.2 Poisson Solver

The itk::DCTPoissonSolver class transforms the input, applies a modulation, and reverse transforms
back into the image domain, as described in Equation 13. The following minimal example demonstrates
definition, instantiation, and usage of the itk::DCTPoissonSolverImageFilter class.

typedef itk::DCTPoissonSolverImageFilter< WorkImageType, WorkImageType > PoissonType;
PoissonType::Pointer solver = PoissonType::New();
solver->SetInput( laplacian->GetOutput() );
solver->Update();

Figure 20 shows an example of an image of the brain (20a), its Laplacian (20b), and the solution of the
Laplacian (20c). In the rescaled image, the solution appears to match exactly the input image. However,
by plotting the vertical centerline of each image (Figure 21), we see that the input and output differ by an
additive constant of ∼ 123.7, as is expected from any integration procedure.
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Figure 20: The original (20a), Laplacian (20b), and solution of the Laplacian (20c) images for an axial CT slice through
the brain.

Figure 21: Plot of grayscale intensities along the vertical centerline of the input and output images. Note that the two
curves differ by an additive constant.
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