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Abstract

This document describes the derivation of the mixture models commonly used in the literature to describe
the probabilistic nature of speckle: The Gaussian Mixture Model, the Rayleigh Mixture Model, the
Gamma Mixture Model and the Generalized Gamma Mixture Model. New algorithms were implemented
using the Insight Toolkit ITK www. itk .org for tissue characterization by means of a mixture model. The
source code is composed of a set of reusable ITK filters and classes. In addition to an overview of our
implementation, we provide the source code, input data, parameters and output data that the authors
used for validating the different probabilistic tissue characterization variants described in this paper.
This adheres to the fundamental principle that scientific publications must facilitate reproducibility of
the reported results.
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1 Introduction

The analysis of backscattered echo from tissues has gained an increasing attention during the last decades
in ultrasound imaging. The main reason is that the parameters of the statistical models lead to identify the
features of tissues and provide important descriptors for classification.

Several statistical models have been proposed over the last years. Probably the most well known is the
Rayleigh model, which is a one-parameter distribution which describes the so-called fully formed (or de-
veloped) speckle. This probabilistic distribution describes the behavior of a speckle when a high number
of effective scatterers are present in the resolution cell. However, real images show a deviation from this
model, this non-Rayleigh behavior can be due to a small number of scatterers in the resolution cell or when
there are some dominant components in the cell. The most commonly accepted distributions that try to
model non-Rayleigh distributions are the Rice (fully resolved speckle), K (partially formed speckle), and
Homodyned K (partially resolved speckle).

Although those models are based on physical assumptions of the backscattering process, some other distribu-
tions have proven to provide a good performance on real images. This is the case of Gamma [15, 13, 18] and
Nakagami [11] distributions. The first is proposed as a two-parameter distribution that describes the result
of interpolated/filtered fully formed speckle [18] and also has shown good results in empirical tests among
other distributions [15, 13]. The Nakagami distribution proposed by Shankar for the case US characteriza-
tion [11] is also a two-parameter distribution which generalizes the Rayleigh distribution. This distribution
was adopted from the models proposed to describe the statistics of the returned echo radar.

In ultrasound imaging, the presence of different scatteres within the resolution cell is common. This effect
causes a mixed echolucid response that must be characterized by different distributions. In these cases, a
mixture model becomes an opportune strategy to statistically describe the backscattered echo. The use of
mixture models has been increasingly extended in the literature for multiple applications such as filtering
[16, 14], registration [4, 6], segmentation [10, 1, 3, 2, 8].

In this document we describe the derivation of the mixture models commonly used in the literature to
describe the probabilistic nature of speckle: The Gaussian Mixture Model, the Rayleigh Mixture Model,
the Gamma Mixture Model and the Generalized Gamma Mixture Model. Note that the Nakagami Mixture
Model can be directly estimated from the Gamma mixture model [7].

1.1 Mixture Model

The mixture model can describe the contribution of different statistic distributions in the speckle image and,
thus, provides a probabilistic information of the nature of each tissue. The mixture model can be calcu-
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1.1 Mixture Model 3

lated by means of the expectation maximization (EM) algorithm [12], which maximizes the log-likelihood
function for hidden discrete random variables, Z = {Z;}. Formally speaking, let X = {x;},1 <i < N be an
identically distributed and independent set of samples (pixel intensities) and x; belongs to the distributions
class j when Z; = j. The mixture model considers that these samples result from the contributions of J
distributions:

J
p(xi@) = Y m;fx(xi|®)) (1)
=1

where @ is a vector of parameters of the mixture model (7;,®;) and ®; are the parameters of the distribution
function (Gaussian, Rayleigh, Gamma or Generalized Gamma), Zle 7; = 1 and fy is the probability density
function (PDF) of the marginalized random variable. The Expectation-Maximization algorithm is applied
in the following way:

1. An initial estimation of the hidden variables is obtained by any clustering methodology, such the

k-means [9]. For each cluster, j, the parameter ftﬁ-o) is calculated as follows:
~(0) _ 7
w) = ®)

where n; corresponds to the number of samples in the cluster and N is the total number of samples.

The j parameters, ®§-0), are calculated from samples according to its PDF as we will explain later in
this section.

2. A Bayesian inference step is performed to calculate the posterior probability, v; ;, in the Expectation
step as:

(n—1) (n—1)

T, fx(x6|® )
Yij=p(Zi= jlx, 0" V) = — ®)
! p(xi|@"Y)

3. The parameters for the mixture (®5-") and ftﬁ-")) are estimated in the Maximization step.

4. Until an acceptable tolerance is reached, ||@") —@®"~V||2 < e, an iterative estimation of the parame-

ters is performed repeating step 2 and 3.

Note that the mixture model formulation provides the probability of belonging to each class, for instance
blood or tissue. The probability of belonging to the j-th class for sample x; is obtained by means of the
Bayes’ theorem as:

Jx (xi|®;)m;
p(xi|®)

In what follows, Y = {Y j} j=1...; Will denote the set of probabilistic characterizations for all tissue classes.

Y;(x;) = P{Zi = jlxi} = 4)
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1.1 Mixture Model 4

Gaussian Mixture Model

The tissues response can be described by means of the Gaussian mixture model. This mixture model can
describe the contribution of different Gaussian distributions in the speckle image as it was described in Eq. 1,
where ©; are the parameters of the Gaussian distribution function and fy is the PDF of the marginalized
Gaussian random variable with the following parametrization:

9,
= 1 —(xi —u))?
fx(x{uj,0;}) = exp <12, &)
2no; Cj
where j € {1,---,J}. According to this distribution, the Expectation-Maximization algorithm is applied as

it was described in Section 1.1 where the steps 1 and 3 are:

1. The initial parameters of Eq. 5 are obtained by computing the mean and variance of each cluster, X,

as follows:
nj

nj

0 _ 1 _ 20 1 (02

u; —;j;xtv o —Nj_lgi(xt*llj ) (6)
where x; € X; and n; = |X;|.

3. The parameters for the mixture of Gaussian distributions ({1; and ) are estimated in the Maximization
step for each distribution as follows:

N) (n)
J0 = I e KW (i )° o
! Y Vi Y v
. (n 1Y

Rayleigh Mixture Model

The tissue response can be described by means of the Rayleigh mixture model. This mixture model can
model the contribution of different Rayleigh distributions in the speckle image as it was described in Eq. 1,
where ©; are the parameters of the Rayleigh distribution function and fx is the PDF of the marginalized
Rayleigh random variable with the following parametrization:

c} 5
A X —X
x{"c; })=—exp|— |, x>0andoc;>0 )
A =25 P<2c3) >0and o,
where j € {1,---,J}. According to this distribution, the Expectation-Maximization algorithm is applied as

it was described in Section 1.1 where the steps 1 and 3 are:

1. The initial parameters of Eq. 9 are obtained by computing the mean of each cluster (u;) as follows:

A(0 2
6 =u\/ - (10)

where u; = 64/7/2 according to the parametrization used.
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1.1 Mixture Model 5

3. The parameters for the mixture of Rayleigh distributions (6; and 7t ;) are estimated in the Maximization
step for each distribution as follow:

N 2
LY YiyX;

(11)
2 YNy,

Gamma Mixture Model

In this case, the tissues response can be described by means of the Gamma mixture model proposed by [19].
This mixture model can describe the contribution of different Gamma distributions in the speckle image as
it was described in Eq. 1, where ©; are the parameters of the Gamma distribution function and fx is the
PDF of the marginalized Gamma random variable with the following parametrization:

0,
—— x(Xj*l e ( x )
x{oi,Bi})=——x" "exp|—5 ), x>0anda;,p;>0 (12)
Jx(x{a, Bj}) szjr(ocj) p B j»B
where j € {1,---,J}, o; and B; are the shape and scale parameters respectively. According to this distribu-

tion, the Expectation-Maximization algorithm is applied as it was described in Section 1.1 where the steps
1 and 3 are [19]:

1. The initial parameters of Eq. 12 are obtained by computing the mean and variance of each cluster (G?
and u;) as follows:

A . Hj
O ==L 0= (13)
J u; J B5.0)

where G? = [33 and u; = af according to the parametrization used.

3. The parameters for the mixture of Gamma distributions (&}, B ; and 7t ;) are estimated in the Maximiza-
tion step for each distribution as follow:

~(n N . N Y N ¥, log(x;
ocg - log(&;) —y(6j) = log (ZNIIY;_ ) — Zg\,”l Y'g'( ) 14)
i=111,] i=11{1,]
N N
~(n) 1 am) 1 XL Vi
o= =) Yijs B, = e v (15)
J N ; ! UEIONS VL7

J

where W is the digamma function.

Generalized Gamma Mixture Model

Similarly to the previous probabilistic tissue characterization, the different response of tissues can be de-
scribed by means of the GG mixture model proposed by [17]. This mixture model can describe the con-
tribution of different GG distributions in the speckle image as it was described in Eq. 1, where in this case
©; are the parameters of the GG distribution function and fx is the PDF of the marginalized GG random
variable with the following parametrization:

Latest version available at the Insight Journal [ http://hdl.handle.net/10380/3517]
Distributed under Creative Commons Attribution License


http://www.insight-journal.org
http://hdl.handle.net/10380/3517
http://creativecommons.org/licenses/by/3.0/us/

0;
' x(Pivi=1)
— X \p
fx(x{a;,vj,p;}) :%e_(x/“-’)' , x>0andaj;,vj,p;>0 (16)
aj F(VJ')
where j € {1,---,J}, a; is a scale parameter, v; and p; are shape parameters. In this way, the Expectation-

Maximization algorithm is applied as it was described in Section 1.1 where the steps 1 and 3 are [17]:

1. The initial parameters of Eq. 16 are obtained for each cluster, X, by estimating:

nj
P = argmax {Z log fx (ximj(ﬁj)aoj(ﬁj)aﬁj)} (17

Pj i=1

where x; € X; and n; = |X;|. The parameters d;(p;) and V;(p;) in Eq. 17 are estimated from the
Gamma(Xf /o, B) distribution where @;(p;) = B~/ and ¥;(p,) = a. In particular, éﬁ-o) =d; (ﬁ&o))

and V' = 0;(p\").

3. The parameters for the mixture of Generalized Gamma distributions, d;, p;,V; and &;, are estimated
in the Maximization step for each distribution as follow:

(0 3 LA
p;’ = argmax ¢ Y yi;log fx | x|l =2, V,(p)), (18)
Pj i=1 Vi(Pj) Lit1 Vij
N 135'”) N ﬁg'n)
Voo AP /E! .
OS'H) — log(\A/j) _W(\A’j) =log Zl_%V'YWXI _ Zz_lyl,]{, Og(xz ) (19)
i=1Yi,j Yio1Yij
. P 1y N
A(1) Y1 Vi NOE.
a: = = , T =— Z'Yij (20)
J . j ,
Vg-n) ?L]Yt}j Ni:I

where W is the digamma function and V(5 ;) is estimated as Eq. 19 for a particular ;.

2 Brief note on the Implementation

The main contribution of this work is to extend the Gaussian mixture model to three new mix-
ture models commonly used for characterizing the tissue in ultrasound images, Rayleigh, Gamma
and Generalized Gamma. In particular, the tissue characterization is done by means of two fil-
ters and the mixture model. As shown in section 1.1, several blocks can be distinguished for
the EM strategy used to calculate the mixture model. In particular, one can see three necessary
parts, a density function (itk::Statistics::MixtureModelMembershipFunctionBase), an initializa-
tion (itk::Statistics::MixtureModelInitHelper), and a component where the maximization step
is done ( itk::Statistics::MixtureModelComponentBase). The EM strategy is implemented in
the itk::Statistics::ExpectationMaximizationMixtureModelEstimator class (Fig. 1) and corre-
sponds to the step between 2 and 4 according to the EM strategy described in section 1.1. Figure 1 shows the
classes and relations between all the components of the EM strategy where the following classes correspond
to the ITK implementation:
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e itk::Statistics::ExpectationMaximizationMixtureModelEstimator
e itk::Statistics::WeightedCovarianceSampleFilter

e itk::Statistics::WeightedMeanSampleFilter

Expectation-Maximization

—— N .
Mixture Model Estimator (|
1% 1
Membership Function 1 Mixture Model MLE Cost
Base Component Base funcion
| | Weighted Mean | , AN
SampleFilter \
Gaussian Gamma :
: . . . Gaussian Gamma 1 Gamma
Membership Function Membership Function / Mixture Model Mixture Model | MLE Function
r 1
Weighted ,——|
| | Covariance 1
Gamma Generalized Gamma SampleFilter Rayleigh Generalized G . 1| Generalized Gamma
Membership Function Membership Function Mixture Model Mixture Model " MLE Function

Figure 1: Class Diagram for Mixture Model

Minor changes were added to the following classes to unified the parameter setting for all the membership
functions:

e itk::Statistics::MixtureModelMembershipFunctionBase
e itk::Statistics::itkMixtureModelComponentBase

e itk::Statistics::GaussianMembershipFunction

e itk::Statistics::GaussianMixtureModelComponent

Since the Gamma and Generalized Gamma mixture model have no close form, the EM strategy is performed
by doing an optimization step of a cost function which corresponds to the Eq. 14 for the Gamma mixture
model and Eq. 18 and Eq. 19 for the Generalized Gamma mixture model. Additionally, the proposed ini-
tialization described in section 1.1 is implemented by the itk::Statistics::MixtureModelInitHelper
filter (Fig. 2).

Init Helper
N
Gaussian Rayleigh
Init Helper Init Helper
I |
Gamma Generalized Gamma
Init Helper Init Helper

Figure 2: lllustration of the hierarchy for the initialization.

The probabilistic tissue characterization (Eq. 4) is implemented in the
itk::Statistics::LikelihoodMapImageFilter class. If we take into account two classes for the
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mixture model (blood and tissue), the probabilistic characterizations of the tissue will belong to the
distribution class j with the highest mean. However, this criteria can be modified in the SortValue ()
defined in each concrete class of itk::Statistics::MixtureModelComponentBase. This method
can be useful, for example, if we are using three classes for the mixture model. In this case, we could
modified the sort criteria to use the middle mean instead of the highest, or the lowest if we want to
characterize the blood instead of the tissue. Finally, the complete procedure to initialize, estimate
the mixture model parameters and create the probabilistic tissue characterization is encapsulated in
itk::Statistics::TissueCharacterizationFilter and the relation between classes is depicted in
Figure 3.

0..1
.1 Tissue Characterization Init Helper
£ \ 1 el -
L“;II;ellgﬁ;c: Expectation-Maximization 1.7 Mixture Model
P Mixture Model Estimator | Component Base

1.* 1.*

Membership Function
Base

Figure 3: Tissue characterization class diagram.

3 Software Requirements
You need the following software installed:

o Insight Toolkit 4.x available in http://www.itk.org/ITK/resources/software.html
e CMake 3.2 available in http://http://www.cmake.org/download/

e Boost C++ Library 1.58 available in http://www.boost.org/users/download/

4 User’s Guide

From a user’s point of view, the most important file of our submission is the example application provided
in src/MixtureModel.cxx. The goal of this example is to provide a command-line tool to perform a tissue
characterization for all the mixture models described in this paper. This tool works in 3D and can trivially be
extended to other dimensions. Three images are provided to be used as example (Fig. 4). The first image was
acquired using a comercial ultrasound system, Philips iE33 xMatrix (Philips Healthcare, Best, Netherlands),
with a transthoracic transducer X5-1 matrix-array (TTE.mhd). The second image was acquired using a
similar comercial ultrasound system, Philips iE33 xMatrix, with a transesophageal transducer X7-2t matrix-
array (TEE.mhd). Finally, the third image correspond to a synthetic image (Normal _000.mhd) described
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in [5]. The user can choose the input image, the maximum number of iterations, the subsampling ratio,
a threshold value used to improve the mixture model approach and the number of classes. The image
10O operations use standard ITK filters meaning that all file formats supported by ITK can be used. This
command-line tool is used within several unit tests triggered by CMake (ctest). For example, the command
line to launch the example is:

$ ./MixtureModel ../Data/Normal_000.mhd 700 100 10 2

Figure 4: Dataset provided. (TTE) Transthoracic echocardiography. (TEE) Transesophageal echocardiography. (Nor-
mal_000) Synthetic image.

5 Results

In this section, we describe the probabilistic tissue characterization for the mixture model studied for the
dataset provided. However, a detailed analysis about the performance of mixture models in ultrasound tissue
classification can be found in [16, 17, 19]. Figures 5, 6 and 7 show the probabilistic tissue characterization
for the mixture model taking into account two classes, one for the blood and the other one for the tissue.
Aditionally, the processing time and memory of the tissue characterization for the mixture models studied
for the dataset images provided are shown in Table 1. Since the parameter estimates for the Gamma and
Generalized Gamma mixture model involve an optimization step of a cost function (MLEFunction), the
processing time depends on particular settings and image, i.e. the number of iterations, the threshold and
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TTE (TTE.mhd) TEE (TEE.mhd) Synthetic (Normal _000.mhd)
Time (s) | Memory (kB) | Time (s) | Memory (kB) | Time (s) Memory (kB)
Gamma Tissue Characterization 0.922776 73156 3.08795 115992 0.148964 15108
Gaussian Tissue Characterization 1.68256 1644 3.34721 1584 0.412031 644
Generalized Gamma Tissue Characterization | 8.86709 2852 48.1509 2860 1.94123 708
Rayleigh Tissue Characterization 0.637129 155616 0.481413 247656 0.0925519 39640

Table 1: Processing time and memory of the tissue characterization for the mixture models studied for
the transthoracic echocardiography (TTE), transesophageal echocardiography (TEE) and synthetic image
provided.

B: tissueGaussian-TTE i B: tissueGamma-TTE

B: tissueRayleigh-TTE ,' B: tissueGGamma-TTE
5cm

Figure 5: Tissue characterization for the Gaussian, Rayleigh, Gamma and Generalized Gamma Mixture models for
the transthoracic echocardiography (TTE).

the quality of the image.

6 Conclusion

We have proposed several ITK implementations of mixture models (Rayleigh, Gamma and Generalized
Gamma), and several filters used for initialization of the expectation maximization strategy and for tissue
characterization. To the best of our knowledge, this is the first open-source implementation of these mixture
models and filters within the Insight Toolkit. The design of our implementation tries to follow the design
of ITK and thus provides templated N-dimensional filters. The code should be easily integrated to ITK and
provide reusable blocks.

Latest version available at the Insight Journal [ http://hdl.handle.net/10380/3517]
Distributed under Creative Commons Attribution License


http://www.insight-journal.org
http://hdl.handle.net/10380/3517
http://creativecommons.org/licenses/by/3.0/us/

11

B: tissueGaussian-TEE B: tissueGamma-TEE

dcm

B: tissueRayleigh-TEE B: tissueGGamma-TEE
5cm 5cm

Figure 6: Tissue characterization for the Gaussian, Rayleigh, Gamma and Generalized Gamma Mixture models for
the transesophageal echocardiography (TEE).

B: tissueGaussian-TTE ) B: tissueGamma-TTE

B: tissueRayleigh-TTE ~' B: tissueGGamma-TTE
5cm

Figure 7: Tissue characterization for the Gaussian, Rayleigh, Gamma and Generalized Gamma Mixture models for
the synthetic Normal_000 image.
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