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Abstract

The Fast Marching algorithm is an efficient numerical method for computing the shortest path between
points of a domain in Rd . For that purpose, it solves a front propagation problem, which can be of interest
in itself. The method has numerous applications, ranging from motion planning to image segmentation.
The unit of length, for computing the path length, may vary on the domain. Motivated by applications,
we generalize the algorithm to the case where the unit of length also depends on the path direction.
Segmentation methods can take advantage of this flexibility to achieve greater sensitivity and specificity,
for a comparable computation time.
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We develop an extension of the itk::FastMarchingImageFilter class, which handles anisotropic mea-
sures of path length, or front propagation speeds. Path length is measured locally through a Riemannian
metric, or an even more general Finsler metric, instead of a multiple of the standard euclidean norm in the
original ITK implementation. The flexibility offered by our extension allows to develop new segmentation
methods, or to increase the sensibility and specificity of existing ones. Our implementation of Anisotropic
Fast Marching relies on special pixel neighborhoods, illustrated inFigures 1 and 2 and mathematically justi-
fied in [8, 7], built using tools from discrete geometry. This operation is transparent to the user, but helps to
achieve a good accuracy / numerical complexity compromise. Similar methods can be applied to anisotropic
diffusion [4, 9].

1 Path length distances, geodesics, front propagation, and the eikonal PDE.

The geometrical background of the Fast Marching method is the computation of shortest paths, also called
minimal geodesics, within a compact domain Ω ⊂ Rd . Path length is measured locally via a metric1 F ,
which associates to each point z ∈Ω a norm Fz on Rd . The length of a smooth path γ : [0,1]→Ω is

LengthF (γ) :=
∫ 1

0
Fγ(t)(γ

′(t))dt.

The distance between two points x,y ∈Ω is defined as the length of the shortest path joining these points:

DF (x,y) := inf{LengthF (γ); γ : [0,1]→Ω, γ(0) = x, γ(1) = y}.

A convenient way to visualize a metric is through the unit balls Bz associated to its norms Fz, z ∈ Ω, also
called Tissot’s indicatrix, see Figures 1 and 2

Bz := {u ∈ Rd ; Fz(u)≤ 1}.

Consider a subset of seeds X0 ⊂ Ω, typically a single point X0 = {x0}. The fast marching algorithm allows
to estimate the geodesic distance U from the set X0:

U(x) := min{DF (x0,x); x0 ∈ X0}

The value U(x) is also the minimal time T required to reach the point x, starting from the set X0, via a
path γ : [0,T ]→ Ω moving at unit speed: Fγ(t)(γ

′(t)) ≤ 1, equivalently γ′(t) ∈ Bγ(t), for all t ∈ [0,T ]. In
this min-time interpretation, Tissot’s indicatrix Bz thus describes the authorized path speeds at point z. Said
otherwise, if z ∈Ω and if u is a unit vector ‖u‖= 1, then the speed limit at z in the direction u is 1/Fz(u).

The shortest path γ : [0,T ] reaching a point x ∈Ω from the closest element of X0 can be recovered by solving
an ordinary differential equation, involving the from arrival times U and the dual metric F ∗: γ(T ) = x and

γ
′(t) = ∇F ∗

γ(t)(∇U(γ(t))), where F ∗x (u) := max
Fx(v)=1

〈u,v〉. (1)

The distance U from the set X0 can also be regarded as the arrival time of a front, originating from X0 and
moving at speed F ∗z (n(z)) at a point z with front outward normal n(z). The front line at time t is the level
set {z ∈Ω; U(z) = t}. The eikonal PDE (Partial Differential Equation) accounts for this front formulation{

F ∗x (∇U(x)) = 1 x ∈Ω\X0,

U(x0) = 0 x0 ∈ X0.
(2)

1 Within this paper, the term metric is understood in the sense of differential geometry: the data of a norm at each point of a
domain. This is obviously distinct from the understanding, as in itk::Metric, of a measure of similarity between images.
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Figure 1: A metric F on a domain Ω⊂Rd is the data of a norm Fz on Rd at each point z∈Ω. Tissot’s indica-
trix is a convenient way to represent metrics, by showing the associated unit ball Bz := {u ∈R2; Fz(u)≤ 1}.
This is a standard ball of radius s(z) for Isotropic metrics (i,a); a centered ellipsoid for Riemannian metrics
(ii,a); and finally an off-centered disk, or ellipse, for the asymmetric Finsler metrics considered here (iii,a).
The Fast Marching algorithm requires to construct stencils satisfying a geometric acuteness property [12].
The standard four point stencil is fine for isotropic metrics (i,b), already available in itk, but more sophisti-
cated constructions are required for Riemannian (ii,b) or Finsler (iii,b) metrics.

The metric F is the main input of the Fast Marching algorithm. In applications to segmentation, it should
be chosen so that the shortest paths align with important features of an image of interest. It may have one of
the following forms, which offer various amounts of flexibility:

Fz(u) = ‖u‖, (Euclidean Metric)

Fz(u) = ‖u‖/s(z), (Isotropic Metric)

Fz(u) =
√
〈u,M(z)u〉, (Riemannian Metric)

Fz(u) =
√
〈u,M(z)u〉−〈ω(z),u〉. (Finsler Metric)

We denoted by ‖ · ‖ and 〈·, ·〉 the standard euclidean norm and scalar product on Rd .

The Euclidean Metric, the simplest and most common one, can be used to find the shortest path in a domain
with obstacles. ITK’s implementation of the fast marching algorithm is limited to Isotropic Metrics, deter-
mined by a scalar field s : Ω→ R∗+. Tissot’s indicatrix Bz is then an euclidean ball of radius s(z), see Figure
1 (i). In the min-time interpretation, s(z) is the maximum allowed path speed at point z, in any direction. It
is also the front normal propagation speed.

The implemented filter itk::AnisotropicFastMarchingImageFilter adds support for Riemannian met-
rics, in dimension 2 and 3. Tissot’s indicatrix Bz is then an ellipsoid, which axes and aspect ratio are de-
termined by the eigenvalues and eigenvectors of M(z), see Figures 1 (ii) and 2. Riemannian metrics are
defined through a field M : Ω→ S+d of symmetric positive definite matrices. In the min-time interpretation,
the maximum allowed path speed at z is larger in the direction of some eigenvectors of M(z), and smaller in
the direction of others.

We also implemented a family of asymmetric Finsler metrics, in 2D only. They combine a symmetric
part, determined by a positive definite symmetric matrix M(z), and an asymmetric part determined by a
vector ω(z). Tissot’s indicatrix Bz is again an ellipse, but it is not centered on the origin if ω(z) 6= 0,
see Figure 1 (iii). The authorized speed 1/Fz(u) in a direction u is thus a-priori different from the speed
1/Fz(−u) in the opposite direction−u. The distance associated to a Finsler metric is in general asymmetric:
DF (x,y) 6= DF (y,x). This apparent oddity is entirely legitimate in tasks of motion planning (climbing a hill
is harder than going down) and image segmentation (the right and left of an object contour, which correspond
to the foreground and background, should have different characteristics), see §3.
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Figure 2: The unit balls {u ∈ R3;Fz(u) ≤ 1} associated to a three dimensional Riemannian metric are
ellipsoids. They can be needle like (i) or disk like (iii). In order to compute minimal geodesics, the imple-
mented filter discretizes an eikonal PDE using a numerical scheme based on stencils which tend to mimic
the ellipsoid shapes (ii) and (iv). They are built of Voronoi vectors with respect to the anisotropic metric [8].

1.1 Anisotropy ratio of the metric

The anisotropy ratio of a norm Fz and of a metric F are defined by

κ(Fz) := max
‖u‖=‖v‖=1

Fz(u)
Fz(v)

, κ(F ) := max
z∈Ω

κ(Fz).

The number κ(Fz) reflects how much the norm Fz deviates from isotropy, in other words distinguishes
between directions u, v, around the point z. Euclidean and isotropic metrics satisfy κ(F ) = 1 (no local dis-
tortion), whereas κ(F )> 1 for anisotropic Riemannian and Finsler metrics. Indeed Euclidean and Isotropic
metrics treat all directions equally, whereas the newly supported Riemannian and Finsler metrics offer the
flexibility to define privileged directions and orientations, see Figure 1.

Our algorithm handles well metrics with anisotropy ratio in the range κ(F ) ∈ [1,20]. In the case of a
Riemannian metric, the ratio of the largest eigenvalue λ(z) to the smallest one µ(z) of the positive definite
tensor M(z) should therefore satisfy λ(z)/µ(z)≤ 202 = 400, at all points z of the image domain.

The theoretical complexity of our filter is logarithmic in the anisotropy ratio: O((1+ lnκ(F ))α N lnN),
where α ∈ [1,3] depends on the metric type. In practice, computation time is 3× to 5× longer than with
ITK’s standard isotropic fast marching, independently of the metric. This is a significant improvement over
earlier approaches [12, 2] to anisotropic Fast-Marching, which makes the method practical for applications.

2 Filter Usage

The implemented filter usage involves three successive steps. First: the construction of the metric F , under
the form of an image which pixels are norms. Second: the propagation of a front. Third: the extraction of
the desired geodesics.
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Figure 3: Typical filter usage

2.1 Construction of the metric

A metric F is the data of a norm Fz, at each point z of a domain Ω. It is represented numerically by an
image which pixels are norms. The corresponding path speeds are illustrated on Figure 1, and some usage
cases are described in §3.

The template parameter TComponent should be a floating point type. The mathematical validity of a con-
structed norm can be tested via the method IsDefinite().

• Norm types itk::Riemannian2DNorm<TComponent> and itk::Riemannian3DNorm<TComponent>.
Used to define two and three dimensional Riemannian metrics, see §1. They publicly inherit from
itk::SymmetricSecondRankTensor<TComponent,VDimension>, where VDimension respectively
equals 2 or 3. The norm F(u) =

√
〈u,Mu〉 is valid iff the tensor M is positive definite.

• Norm type itk::Finsler2DNorm<TComponent>.
Used to define two dimensional Finsler metrics, see §1. Data members are a tensor
M, of type itk::SymmetricSecondRankTensor<TComponent,2>, and a vector ω, of type
itk::Vector<TComponent,2>, accessible via the methods GetM() and GetOmega(). The norm
F(u) =

√
〈u,Mu〉−〈ω,u〉 is valid iff M is positive definite, and 〈ω,M−1ω〉< 1.

• Norm type itk::ExtendedNorm<TPrimaryNorm>.
Defines a d + 1 dimensional norm type, from a d dimensional norm type TPrimaryNorm2. Data
members are a d-dimensional norm Fd , of type TPrimaryNorm, and a scalar value α, accessible via the

2Only Riemannian2DNorm and Riemannian3DNorm are currently supported as primary norms.
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methods GetPrimaryNorm() and GetScalar(). The d+1-dimensional norm Fd+1 is mathematically
defined by

Fd+1(x1, · · · ,xd+1) =
√

Fd(x1, · · · ,xd)2 +αx2
d+1.

The norm Fd+1 is valid iff Fd is valid and α is positive.

2.2 Front propagation, and geodesic extraction

The implemented anisotropic Fast Marching class inherits3 from ITK’s classical isotropic Fast Marching
class, hence the initialization syntax is identical, see Figure 3.

Our filter implements a fast and robust method for extracting geodesics, by solving the ODE (1), which
takes advantage of the upwind gradients generated during the front propagation, see [8] Appendix A. It is
parameterless and guaranteed to terminate. Alternatively, one may bypass the proposed method and rely
on standard ODE solvers for (1), such as Runge-Kutta methods which are often more accurate but require
setting an adequate termination criterion. Given a reference to an std::vector containing single continuous
index (resp. physical point), the method Geodesic appends to the vector a sequence of continuous indices
(resp. physical points): the vertices of a polygonal path approximating the minimal geodesic to the closest
seed.

2.3 Command line syntax

From the command line, the syntax is AnisotropicFastMarchingLBR

• Metric filename. The image describing the metric to be used by the Fast-Marching algorithm. An
image of symmetric second rank tensors is converted into a Riemannian metric. In general, the metric
type is determined by the number of the number of components per pixel.

• Seeds filename. This file describes the set X0 from which the front propagation starts, see (2). It can
be a one dimensional image which pixels are points, or a txt file with one point per line, coordinates
separated by spaces.

• Tips filename. The set of points from which geodesics are to be computed. Same format as the seeds.

• Output geodesic filename. Where to store geodesics, with same format as the seeds and tips. In the
case of several tips, hence several geodesics, a number is appended to the filename. (e.g. geo.txt→
geo 1.txt, geo 2.txt, . . . )

• Output image filename (Optional). Where to store the distance function U , solution of (2).

3 Application examples

We illustrate the flexibility offered by Riemmanian and Finsler metrics in some typical use cases of the Fast
Marching algorithm: motion planning, image segmentation, and 3D tubular structure extraction.

3 More precisely, it inherits from a slight variant itk::FastMarchingImageFilter Modified which essentially does not
check that MetricType::PixelType is convertible to double (this is obviously not true with an anisotropic NormType), and declares
a protected accessor to the private variable m TrialHeap.
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Figure 4: Motion planning example §3.1. (i) Input image, regarded as a height map. (ii) 3D surface view.
(iii) Riemannian distance map and shortest path between points A and B (iv) Finsler distance map and
shortest path from A to B. The latter path follows the winding road on the way up, but goes straight on the
way down, a common strategy for mountain hikers.

In this paper, we limit the discussion to synthetic examples, and provide simple metric constructions which
should only be used as an heuristic guide or as a starting point for real applications. Indeed, this section
does not intend to provide turnkey solutions for complex imaging problems, but to illustrate the flexibility
and opportunities offered by anisotropic fast marching. The construction of adequate metrics for image
processing tasks is a research area in itself [11, 3].

Throughout this section let Ω⊂Rk be a (box) domain, of dimension k = 2, or k = 3 in the last example. The
letter z stands for a generic point of Ω. The image of interest is denoted by I : Ω→ R, its gradient direction
by n, and the orthogonal direction (in dimension 2) by t: for all z ∈Ω

n(z) := ∇I(z)/‖∇I(z)‖ t(z) := n(z)⊥.

Finally, Idk denotes the k× k identity matrix.

3.1 Motion planning

In this example, we regard the image I as a topographical height map, and aim to compute distances and
shortest paths on the parametrized surface S ⊂Ω×R⊂ R3 defined by:

S := {(z, I(z)); z ∈Ω}.

The geodesic surface distance U(z) = DS (z0,z), from a fixed point (z0, I(z0)) to (z, I(z)) along the surface
S , is obtained via an anisotropic fast marching on Ω with seed z0 and Riemannian metric:

M(z) := Id2+∇I(z)∇I(z)T =

(
1+∂xI(z)2 ∂xI(z)∂yI(z)

∂xI(z)∂yI(z) 1+∂yI(z)2

)
.

From the perspective of motion planning, the above Riemannian modeling is not entirely satisfying, because
most vehicles, human walkers, or robots, move slower and use more energy when climbing uphill than when
going downhill. Finsler metrics can account for such asymmetries. For instance they can model the situation
where an agent walks at (euclidean) unit speed in any direction, but also simultaneously slides downhill at
some speed−W (z), so that authorized path speeds thus form an off-centered disk: Bz = {u−W (z); ‖u‖≤ 1},
as illustrated on Figure 1 (iv). In general, the norm Fz such that Bz = {u−W ; uT Mu≤ 1} is constructed as
Fz := Finsler2DNorm::TranslatedEllipse(M, W). For illustration we choose

W (z) := (1− s(z))n(z) where s(z) :=
1

1+‖∇I(z)‖2 ,

so that the uphill speed, in the direction n(z), is s(z). See Figure 4.
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Figure 5: Image Segmentation Example §3.2. (i) Image of interest. Distance map and shortest path from B
to A with (i) Isotropic metric, (ii) Riemannian metric (iii) Finsler metric. In the case of the Finsler metric,
thanks to asymmetry, the shortest path from A to B (i, green) is distinct from the one from B to A (i and iv,
yellow): they correspond to two complementary components the black object (i) boundary.

3.2 Image segmentation

Consider an image, potentially blurred and noisy, of an object which needs to be segmented, represented
by I : Ω→ R. The image gradient, denoised if needed, is strong along the object boundary, and points
orthogonally to it. Introduce a speed function increasing with the gradient magnitude: for illustration

s(z) := 1+‖∇I(z)‖2.

The object boundary between two given4 points z0,z1, may be extracted using the classical fast marching
algorithm as the shortest path between these points with respect to the Isotropic metric Id2 /s(z)2.

Anisotropic fast marching allows to improve the robustness and the accuracy of this method. The Rie-
mannian metric defined by the following tensors prescribes a path speed s(z) in the direction t(z), hence
tangentially to the object boundary, and in contrast a slower path speed of 1 in the direction n(z), normal to
the object boundary

M(z) :=
1

s(z)2 t(z)t(z)T +n(z)n(z)T .

Finsler metrics, thanks to their asymmetry, can encode the fact that the right and left of the path should have
different characteristics, corresponding respectively to the foreground and the background of the segmented
object. The metric is defined by the parameters

M(z) := Id2, ω(z) :=
(

1− 1
s(z)

)
t(z).

It prescribes a large path speed 1/Fz(t(z)) = s(z) in the direction of t(z). In contrast path speed is
1/Fz(−t(z)) ≈ 1/2 in the opposite direction −t(z), and 1/Fz(±n(z)) = 1 in the directions ±n(z) which
are orthogonal to the object boundary. The geodesic active contours introduced in [13, 6] follow a similar
idea. Since the constructed metric is asymmetric, the geodesic path z0→ z1 is different from the one z1→ z0:
they correspond to two complementary components the object boundary.

3.3 Tubular structure extraction

Consider an image of dimension k ∈ {2,3}, featuring tubular structures (e.g. arteries, axons) which need to
be extracted. Assume that a tubularity score s : Ω→R, and an field of unit vectors E : Ω→Rk approximating

4The provided filter can extract geodesics between prescribed endpoints z0,z1 ∈ Ω, but not closed geodesics, often referred to
as active contours, as in [6].
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Figure 6: Tubular structure extraction example (3D). (i) Source image. (ii), (iii) Fast Marching front at time
t = 0.7, and extracted geodesics, with an isotropic metric. (iv), (v) Likewise with the Riemannian metric, at
time t = 1.

the tube orientation, have been extracted by a preprocessing of the image I : Ω→R. Given two points z0,z1
at the extremities of a tubular structure, we may extract the centerline as the shortest path with respect to the
metric

M(z) :=
E(z)E(z)T

s(z)2 +
(
Idk−E(z)E(z)T )

which encodes a path speed s(z) in the direction of E(z), and an unit speed in orthogonal directions. The
alternative isotropic metric, used in Figure 6 (ii), (iii), is simply Idk /s(z)2.

Figure 6 illustrates this procedure. Given (i) an image of two fuzzy vessels, we used
itk::HessianRecursiveGaussianImageFilter to extract the hessian H(z) for all z ∈ Ω. We let E(z)
be the eigenvector associated to the eigenvalue of smallest magnitude, and build5 an tubularity score s(z)
using the eigenvalues of H(z). The anisotropic metric does indeed help the tubular structure extraction, by
steering the front evolution in the direction of E(z). As a result, the extracted path is smoother and better
aligned with the centerline.

Shortest paths in lifted spaces. Some segmentation methods rely on shortest paths in a k+1 dimensional
domain Ω× I. This extended domain is the product of the image domain Ω, with an abstract parameter
space I, typically accounting for the radius r ∈ [r∗,r∗] of some tubular structures [5], or their gray level, or
their orientation6 [10, 1]. The class ExtendedNorm<TPrimaryNorm> is intended for this use case.

Conclusion and perspectives

We implemented an Anisotropic Fast Marching Image Filter in ITK, which allows to compute distance maps
and minimal geodesics with respect to Riemannian and Finsler metrics, in addition to Isotropic metrics
already supported by the subclass itk::FastMarchingImageFilter. Numerous applications, including
motion planning, image segmentation, and tubular structure extraction, can take advantage of this additional
flexibility to provide more robust or accurate results. Computation times are 3× to 5× longer than with the
base class, which we regard as a tolerable tradeoff in view of the added functionality. Future work will be
devoted to specific metric constructions, and to geodesic active contours.

5Specifically, we let s(z) := exp((|λ2| − |λ1|)/(|λ1|+ δ)) where λ1,λ2,λ3 are the eigenvalues of H(z), sorted so that |λ1| ≤
|λ2| ≤ |λ3|. On the tube centerline one has |λ1| � |λ2|, and the eigenvector associated to λ1 points in the tube direction. Parameters
δ = 0.5, and σ = 0.3 (for the hessian recursive gaussian filter).

6Periodic boundary conditions, which would be adequate suitable the orientation space [0,π[, are not supported at this time.
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