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Abstract. Deformable (2D or 3D) medical image registration is a chal-
lenging problem. Existing approaches assume that the underlying defor-
mation is smooth. This smoothness assumption allows for solving the
deformable registration at a coarse resolution and interpolate for finer
resolutions. However, sliding of organs and breathing motion, exhibit
discontinuities. We propose a discrete optimization approach to preserve
these discontinuities. Solving continuous deformations using discrete op-
timization requires a fine distribution of the discrete labels. Coupled with
the typical size of medical image datasets, this poses challenges to com-
pute solutions efficiently. In this paper we present a practical, multi-scale
formulation. We describe how discontinuities can be preserved, and how
the optimization problem is solved. Results on synthetic 2D, and real 3D
data show that we can well approximate the smoothness of continuous
optimization, while accurately maintaining discontinuities.
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1 Introduction

Deformable image registration is an important component in medical applica-
tions. Examples include alignment of a patient’s MRI to a reference MRI for
diagnosis, image-guided therapy and adaptive radiation therapy [15].

Although individual organs typically exhibit smooth deformations, sliding
motions along organ and tissue boundaries present discontinuities in the defor-
mation fields. For example, in 4D CT breathing motion data, there is a deforma-
tion with discontinuity between the lung and surrounding tissue. However, the
emphasis of previous approaches has been on underlying smooth deformations,
e.g. [6, 16, 17]. An advantage of these methods is that the deformation can be
solved on a coarse control points grid, and then interpolated to a more fine res-
olution. Additional constraints can be incorporated into the optimization, e.g.,
no negative values in the Jacobian map of the deformation to prevent folding.
On the other hand, these methods cannot accurately compute solutions in the
presence of discontinuities in the deformation field.

One approach to circumvent this discontinuity issue could be to segment each
organ and perform registration on each organ separately. However, this requires
accurate segmentation as a preprocessing step, which is not an easy task. In



addition, different organs may require different segmentation strategies. Finally,
this approach would not take any deformations due to organ interactions into
account.

In this paper, we propose a deformable image registration framework based
on a discrete approach with appropriate regularization which can handle local
discontinuities in deformations efficiently, and accurately preserve smoothness
globally. We consider the registration problem as a labeling problem, where each
label represents a deformation vector. A challenge with discrete approaches is the
large number of labels that has to be considered in order to obtain sufficiently
accurate deformations. We present a multi-scale Graph Cuts (GC) approach
which drastically reduces the number of labels to consider at each scale. We
discuss the properties of such a multi-scale formulation compared to regular
Graph Cuts, and how we solve the corresponding optimization problem. We
will show that we can obtain solutions which are comparable to continuous
approaches, but outperform them in the case of discontinuities. We show results
for both 2D and 3D images. In the remainder of this paper we simply refer to
pixels, which could mean either 2D pixels or 3D voxels.

2 Related Work

Non-rigid registration is a well-studied field. A complete list of previous work is
beyond the scope of this paper. Broadly, non-rigid registration can be divided
into continuous and discrete approaches. Examples of continuous approaches are
described in [6, 17, 16]. These methods assume a smooth underlying deformation
field. Discontinuity preserving approaches on the other hand explicitly aim to
handle discontinuities in the deformation field. Several variational approaches
have been proposed [3, 2, 11]. We propose a discrete optimization approach which
preserves discontinuities, but is much simpler to formulate and achieves better
results.

Non-rigid registration using discrete optimization has been studied in [14, 5,
10, 4, 12]. In most cases, computing accurate deformation vectors requires large
label sets, which translates into high computation time and memory consump-
tion.

Tang and Hamarneh [13] aim to reduce the set of labels by proposing to start
with a coarse label set. By examining the corresponding random walk solution,
they determine where labels need to be refined, recompute a solution and iterate.
If, however, the data contains some mixture of deformations, this approach will
also result in the need to solve a problem with a large set of labels.

We propose the following multi-scale approach: At each scale we consider
a fixed set of labels. For each subsequent scale the discrete step is refined until
desired accuracy is reached. Glocker et al. [5] discuss a refinement scheme for reg-
istration using grid of control points. We instead define our multi-scale approach
directly on the pixels in order to preserve discontinuities. In the next section
we discuss our approach in more detail, and how to solve the non-submodular
problem that results from the multi-scale approach.



3 Multi-Scale Graph-Cuts

The goal of non-rigid or deformable registration is to register a moving N–dimen-
sional image M to a fixed (reference) N–dimensional image F . The result of the
registration procedure yields a deformation vector field T : u ∈ RN . Rather
than solving the forward registration problem: M(T (x)) = F̃ , we solve for the
backward registration, i.e., ∀x ∈ ΩF : T (x) = uF→M . Here, ΩF is the domain of
the fixed image.

For the ease of formulation, the ability to preserve discontinuities with ap-
propriate regularization, and obtaining strong local minima, we have chosen to
use discrete optimization using Graph Cuts. The solution space is discretized
into a set of possible deformations T = {t1, . . . , tn}, and each deformation is
associated with a discrete label: L = {∀i ∈ T : li ↔ ti}. Optimization is thus
formulated as a labeling (f) problem and written as:

E(f) =
∑
x∈Ω

Ed(fx) +
∑

x∈Ω,y∈N (x)

Esm(fx, fy). (1)

A strong local minimum to Equation 1 can be found using α-expansion [12]. To
obtain accurate results, sub-pixel deformation values should be considered. A fine
sampling of the solution space leads to a large number of labels. As complexity
grows linearly with the number of pixels and the number of labels, we propose
a multi-scale approach. We employ multiple scales in both image space, as well
as label space. We next describe the steps involved in our approach.

We first build an image pyramid and start at the coarsest image level Ii.
For image level Ii we start with a coarse label level Ii,l, in which the defor-

mation range for Ii,l is defined by
[
r
Ii,l
1,d : ∆Ii,l : r

Ii,l
2,d

]
pixels, where d is the

dimension index, e.g., d = 1, 2 for 2D, and ∆Ii,l is the step size at level Ii,l.
For discontinuity preservation, we choose our pairwise potential to be a log
student-T distribution: ρV (|up − uq|) = log(1 + 1

2υ2 (|up − uq|)2) [8]. To help
avoid bad local minima, for the current set of labels at level Ii,l, we solve
the optimization problem n times, and perform fusion on the resulting solu-
tions [9]. We then proceed to the next level Ii,l+1, with deformation range[
r
Ii,l+1

1,d : ∆Ii,l+1 : r
Ii,l+1

2,d

]
=

[
r
Ii,l
1,d /δ : ∆Ii,l/δ : r

Ii,l
2,d /δ

]
, where δ > 1. Scaling by

δ redefines the search space in image matching: it simultaneously reduces the
search space while obtaining higher resolution w.r.t. labeled deformations. At
each level Ii,l+1, the deformation vectors are aggregated so that the data and
smoothness term of Equation 1 are redefined on the aggregated deformation
vectors as follows:

E =
∑
p∈Ω

Ed(ūp + u
Ii,l
p ) +

∑
p∈Ω,q∈N (p)

Esm(ūp + u
Ii,l
p , ūq + u

Ii,l
q ). (2)

Here, ū and uIi,l represent the aggregated deformation vector up until level Ii,l−1,
and the current set of labeled deformation vectors, respectively. We repeat this



re-scaling process until a certain amount of smoothness and accuracy is achieved,
and we set the final deformation vector as ūfinal = ū+uIi,l at the current image
pyramid level Ii. The resulting deformation vector fields are then up-scaled for
the next level of the image pyramid.

In Equation 2, we should remark that due to the aggregated deformation vec-
tor, the smoothness terms are now non-submodular. Quadratic pseudo-boolean
optimzation (QPBO) [7] can compute solutions to problems with non-submodular
terms. However, QPBO may return some pixels with unknown label. We employ
α-expansion using QPBO and observe that pixels with unknown label occur only
for a few iterations and just a small (typically < 30) number of pixels. For each
pixel with unknown label, we determine which label gives lower energy: α or
current label. The label that yields lowest energy is then assigned to that pixel.
We also employ QPBO for the fusion of the n solutions computed at each level.

4 Results

We can choose from different dissimilarity metrics for the data term in Equa-
tion 1, e.g., Normalized Cross Correlation or Mutual Information. For the results
in this paper we found that the Sum of Squared Differences (SSD) dissimilarity
metric between moving and fixed images works well. Figure 1 shows a compari-
son for two synthetic examples: one with smooth deformation, and one with dis-
continuities in the deformation. The top row are source, smooth target, ground
truth smooth deformation field colormap, discontinuous target, ground truth dis-
continuous deformation field colormap respectively. The second through fourth
rows show the results for our multi-scale GC (column 1), FastPD [5] (column2),
TV-L1 [2] (column 3), Diffeomorphic Demons [16] (column 4), and FFD using
B-splines [17] (column 5). Our method performs well for both smooth and dis-
continuous deformations. See also Table 1 for a comparison of angular errors
(AE) and relative errors (RE).

Table 1. Error metrics for synthetic smooth and discontinuous deformations. For an-
gular and relative errors, we report: mean (standard deviation). For the discontinuous
case we list error values computed for all pixels, and for only the region near the
discontinuities. Our method performs well for both cases, unlike the other methods.

Multi-scale GC FastPD TV-L1 B-splines Diff. demons

AE 0.17 (0.25) 0.12 (0.28) 0.32 (0.514) 0.09 (0.20) 0.18 (0.30)
RE 0.58 (1.02) 0.39 (0.94) 0.93 (1.80) 0.29 (0.64) 0.63 (1.11)

AE (all) 0.17 (0.25) 0.22 (0.33) 0.22 (0.28) 0.18 (0.29) 0.18 (0.29)
RE (all) 0.60 (1.00) 0.76 (1.39) 0.79 (1.25) 0.61 (0.85) 0.63 (1.11)
AE (region) 0.33 (0.36) 0.64 (0.52) 0.29 (0.30) 0.51 (0.46) 0.46 (0.43)
RE (region) 0.98 (3.922) 1.96 (7.73) 0.94 (3.75) 1.51 (1.18) 1.38 (1.19)



Fig. 1. Top Row source, smooth target, ground truth smooth deformation field col-
ormap, discontinuous target, ground truth discontinuous deformation field colormap.
Rows 2–5 Results for our multi-scale GC (column 1), FastPD [5] (column2), TV-L1 [2]
(column 3), Diffeomorphic Demons [16] (column 4), and FFD using B-splines [17] (col-
umn 5). Our method performs well for both smooth and discontinuous deformations.

In our next 2D example we register a coronal and sagittal slice between full
inhale (T00) and full exhale (T50) from case 1 of the DIR-lab dataset [1]. We
compare TV-L1 with our method. Although both methods are able to preserve
discontinuities, our method also recovers smooth deformation within the lungs.

Figure 3 shows a 3D example using case 5 of the DIR-lab dataset. We now
register the 3D volumes of full inhale (T00) and full exhale (T50). In this figure
we compare our method to FastPD [5]. The right image in the top row is the
FastPD result. The highlighted area shows that discontinuities were not well
recovered. In rows two, three and four we show the target image slice, multi-scale
GC, and FastPD registration respectively. The highlighted areas in the images in
row four show areas where FastPD failed to register the images correctly. Finally,
the bottom row shows the deformation field color maps for multi-scale GC (left)
and FastPD (right). Highlighted areas again show where discontinuities were
incorrectly recovered. We also computed registration errors for the first five cases



Fig. 2. Column 1, 4 Coronal and sagittal source (top row) and target (bottom row)
slices with breathing motion. The registration for our multi-scale GC (top row) source
to target (column 2, 5) and target to source (column 3, 6) compared to TV-L1 (bot-
tom row). Although TV-L1 can preserve discontinuity along the lung-chest boundary,
deformations within lungs are not smooth.

of the DIR-lab dataset, see Table 2. Our registration accuracy for the landmarks
within the lungs is similar to that of FastPD, and somewhere in the middle
compared to the best and worst reported results1. However, the top performing
methods require segmentation prior to registration, whereas our method does
not.

Table 2. Comparison of registration errors (in mm), mean (standard deviation), for
ground-truth landmark points.

Multi-scale GC FastPD Best Worst

Case 1 1.03 (1.09) 1.07 (0.62) 0.76 (0.89) 1.58 (1.30)
Case 2 0.99 (1.00) 1.07 (0.74) 0.72 (0.87) 1.49 (1.35)
Case 3 1.33 (1.23) 1.59 (1.34) 0.91 (1.05) 2.27 (1.40)
Case 4 1.85 (1.83) 2.25 (2.36) 1.22 (1.24) 3.27 (4.09)
Case 5 1.82 (1.91) 1.91 (2.05) 1.07 (1.46) 3.59 (2.83)

5 Conclusion

We have presented a multi-scale GC approach which can achieve both smooth
results as well as preserve discontinuities in the deformations. Although other
methods rely on the assumption that the underlying deformation is always
smooth, practical cases show that this is not necessarily the case. Our method
achieves accurate results with well behaved deformations. Our multi-scale ap-
proach significantly reduces the size of the problem, making it more practical.

1 http://www.dir-lab.com/Results.html



With our current (naive) C++ implementation, on a single-core processor, reg-
istration of a 256 × 256 × 100 volume takes about 120 minutes. Future work
includes a GPU implementation and further evaluation, including clinical cases.
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Fig. 3. (Best viewed electronically) Top Row Multi-scale GC vs FastPD. Highlighted
area shows that FastPD did not preserve discontinuity. Rows 2,3,4 Shown are target
slice, multi-scale GC, and FastPD registration respectively. Highlighted areas in row 4
show the failure to preserve discontinuities by FastPD. Bottom Row The deformation
field color maps for multi-scale GC (left) and FastPD (right). The highlighted areas
for the FastPD result show where discontinuities were properly preserved.


