The graph windowed Fourier transform: a tool to
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Abstract. The Gyrification Index (GI) quantifies the amount of folding
of a cortical surface. In this paper, we show the efficiency of spectral
analysis to perform such a task, and in particular we explain how the
graph windowed Fourier transform can be used as a tool to define new
GIs with multiscale properties. We propose two different GIs and study
their effect on a set of subjects whose cortical surfaces are modeled with
triangular meshes.
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1 Introduction

The human cerebral cortex, as a geometric object, has a highly convoluted shape.
The study of this shape and its complexity is of great interest in order to under-
stand normal and pathological cortical development but is made difficult by the
very large inter-subject variability. Much research has been aimed to quantify
the complexity of human cerebral cortex. To our best knowledge, the first quan-
titative study [1] has been presented in 1961 in which the cortical folding was
measured by using a surface ratio of the cortical surface area over the perimeter
of the brain, measured on two-dimensional coronal sections. Zilles et al. [2] com-
puted a global 2D gyrification index (GI) via the ratio of pial surface perimeter
in a given coronal slice and the perimeter of its convex hull in that slice. Using 2D
sections may cause a bias in perimeter mesurements because of slice orientation
and some buried sulci might be ignored. Schaer et al. [3] argued that in addi-
tion to slice orientation sensitivity, the standard deviation of results obtained
by Zilles’s GI is too high to reveal group differences. By using 3D triangulated
surfaces of the cerebral cortex, they extended the Zilles’s GI to a global 3D GI
based on the area of cortical mesh and that of its convex hull. They also defined



a local version as the ratio between the area of regions of interest on the convex
hull and that of corresponding regions on the pial surface. At the same time,
Toro et al. [4] introduced a local measure of cortical folding through computing
the surface ratio between a part of cerebral cortex contained in a sphere and the
great circle of that sphere. Schaer’s and Toro’s Gls are conceptually similar and
yielded similar results.

Nevertheless, these GIs based on comparing the surface areas may sometime
fail in measuring the amount of folding. Indeed, by using these techniques, deep
folds and a set of more shallow but oscillating folds with equal surface areas have
an equal degree of folding while the latter is intuitively more folded (See Fig.
1(a)).

Another natural way to quantify the quantity of folding of a surface is its
mean curvature. Normal curvatures measure the local bending of a surface in all
directions and the mean curvature is the average of all these quantities. Mean
curvature maps, however, are too local to deliver a helpful insight into the sur-
face foldedness. Luders et al. [5] used a heat kernel smoothing filter to smooth
the absolute mean curvature of the cerebral cortex in order to define a localized
degree of folding but the resulting maps give a very low frequency information.
Instead, in [6], a Fourier-like analysis was applied to the mean curvature of trian-
gulated cortical surfaces. By binning the global frequency distribution in several
frequency bounds and computing the dominant and the determinant bands, they
derived two metrics of folding that can discriminate primary, secondary and ter-
tiary folds.

In this paper, we pursue the same line of research and adapt a local spectral
method, called graph windowed Fourier transform, to quantify the degree of
folding of the cerebral cortex. In the following section, we present the windowed
Fourier transform on graphs and show how it can be used to define relevant Gls.
In Section 3, we present experiments on a set of 20 subjects.

2 Method

The surface of the cerebral cortex is a highly folded closed surface in IR® which
can be approximated by triangulation. The triangulated surface can be analyzed
by the spectral theory which is based on the spectrum of the discretized Laplace-
Beltrami operator associated with the triangle mesh.

Formally, let G = {V, E,w} be a triangulation where V is the set of vertices
with V = {Py,Ps,...,Px},|V]| = N < 0o, E is the set of edges and w : E — IR™
is the weight function which assigns a positive weight to each edge. Meyer et al.
[7] established a discretization of Laplace-Beltrami operator based on linear finite
element formula/finite volume method (Voronoi cell) on the triangulation:
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where N(P;) is the set of vertices which are connected directly to vertex P;,
A(P;) is obtained from the area of Voronoi cell around P; and «;; and §;; are
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Fig. 1. (a) Cross—section of deep folds (red curve) and wavy folds (green curve) with
equal areas in a neighborhood (black circle). By using the methods based on the ratio
of areas, these deep and wavy folds have equal GIs! (b) Second row, right: a wavy rect-
angle; from left to right, it becomes more folded. The color map represents the mean
curvature of this surface. First row: frequency distributions of two vertices located in
less and more folded regions (blue and red points, respectively). Second row, left: pro-
posed gyrification indices (TP and TWP) for the vertices lie on the middle longitudinal
line of the wavy rectangle

the angles opposite to the edge P;P; in two triangles sharing this edge. There
are also other discretization of the Laplaca-Beltrami operator on the mesh [8].

The discretized Laplace-Beltrami operator L is a positive semi-definite ma-
trix with real eigenvalues 0 = A1 < Ay < ... < Ay and complete orthonormal
eigenvectors {x; };,Vzl in IRY which serves as Fourier atoms on triangulation. In-
deed, if f is a function defined on vertices of the triangulation, Fourier transform
of this function is computed by f(I) = (f, x;) where the inner product is in RY.
It gives global information about frequency distribution of the function i.e. it is
local in frequency domain but global in spatial domain.

To have local information in time domain, in 1946, Gabor [9] introduced
windowed Fourier transform to find the frequency distribution of sounds. Shu-
man et al. [10] extended this transform to the graph setting by defining the
generalized translation and modulation operators. In this method, a function is
localized around a point in spatial domain by a window function and then the
Fourier transform of this localized function is computed. The windowed Fourier
transform on graph enables us to do a "vertex-frequency” analysis. Specially, for
analyzing highly complicated surfaces like human cerebral cortex, local analysis
would be more reasonable to get useful morphometric information about the
gyri and sulci in different scales.



The generalized translation operator T; from IRY to itself of a function f €
IRY is defined as:

N
(T:)(n) == VN _ f)xi(@)xa(n), (2)
=1

and the generalized modulation operator M, from RY to itself of a function
f e RY is defined as:

(Myef)(n) == VN f(n)xx(n). 3)

If g € RY is a window function, then the windowed graph Fourier atom is

N
gi(n) = (MiTig)(n) = Nxa(n) Y gWxa(@xln), i k=12,...,N, (4)
=1
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and the windowed graph Fourier transform of a function f € RY is defined
as Sf(i,k) = (f,gik) where i is the index of vertex and k is the index of
frequency. Inspired by classical windowed Fourier transform [11, section 4.2], the
spectrogram |Sf(i, k)|? explains the structure of graph function f in a vertex-
frequency neighborhood of (i, k) characterized by Heisenberg box of g;r. For
each vertex, the frequency distribution |Sf (4, k)|? vs. k delivers local information
about the function defined on the triangulation. We plan to extract some indices
from these distributions to measure the amount of folding of a surface at different
scales.

Given the mean curvature function on vertices of triangulation, the absolute
value and variation of this function are increased in more folded regions. It
increases the frequency powers [10, Theorem 2] and some higher frequencies
appear in frequency distribution of this function (see Fig. 1(b)). Based on these
observations, we propose two local indices of folding and explain why they can
be potentially good representation of degree of folding.

1. Total Power (TP) of each vertex:

N
TP(i) = Y Sf(i, k). (5)
k=1

Thanks to Parseval’s identity, Shuman et al. [10, proof of Theorem 2| showed
that

N
> Sf@k)* = N|f(T:g)ll5. (6)
k=1

In the above formula, T;g translates the window g to vertex P;. So, based on the
property of window ¢, f(7T;g), the component-wise multiplication of vectors f
and T;g, gives more weights to function value of vertices closer to P;. It means
that for two vertices P; and Pj, if the norm of f around P; is greater than the



norm of f around P;, then TP(i) > TP(j). Since in more folded regions the
norm of f (mean curvature) is increased, TP can be a good measure of folding.

This measure, however, is blind to frequencies. In other words, TP does
not discriminate general increase in frequency powers from local increase in
higher frequency powers as they appear in frequency distributions of more folded
regions. So we define a measure which gives more weights to higher frequencies.

2. Total Weighted Power (TWP) of each vertex:

N

TWP() =Y ( |A”2)2 (i, k)2, (7)

k=1

in which, the weights are the Laplacian eigenvalues that are normalized by norm-
2 of Laplacian spectrum A = (A1, Aa, ..., Ay)T. This normalization is used to
remove the effect of size of the surface on weighting. In definition of TWP (7),
both Laplacian eigenvalues and eigenvectors are involved. By investigating the
above total weighted power of frequencies at vertex P; we have
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where (8) and (9) are obtained by definition of generalized modulation operator
M}, and Parseval’s identity respectively. Since Laplacian operator measures how
much a function differs at a point from its average value at neighbor points,
(LfT;g)(P,,) measures the variation of localized f at vertex P, and so, TWP (%)
sums up all of these variations of localized f around vertex P;.

One important feature of this method is existence of a free parameter, called
window size, which causes a locality tradeoff between frequency and spatial do-
mains. Actually, by utilizing a wider window in spatial domain, the function
f is localized in a larger neighborhood of each vertex and on the other hand,
the more local frequency distribution of the function in that neighborhood is
obtained. Based on the Heisenberg’s Uncertainty Principle, it is not possible to
have sharp localizations in spatial domain and in frequency domain at the same
time. Using this property enables us to compute the GIs at different scales.

3 Results

The Gls defined above have been computed on a set of triangulated surfaces
modelling left hemispheres of the cerebral cortex. We used 20 subjects for which
a T1 anatomical Magnetic Resonance Image had been acquired at a spatial res-
olution of 1 x 1 x 1 mm?. Images were segmented using the Freesurfer software’.

! http://freesurfer.net/
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Fig. 2. Gyrification indices, TP and TWP, for 3 subjects with different sizes (the
volume of the white matter), lateral and medial views, with window size 7 = 200

The white matter segmentations were then meshed using the BrainVisa soft-
ware?, which resulted in triangular meshes with spherical topology and approxi-
mately 50,000 nodes depending on the subjects. Inter-subject matching between
all subjects was also computed using HIP-HOP method [12] in order to be able
to perform group statistics. For each surface, the mesh Laplace operator (1) was
computed as well as its first 5000 eigenvectors. The window function g was set
to §(1) = exp(—7A;) and is normalized to ||g||2 = 1 where the parameter 7 > 0
determines the size of window — the lower 7 the smaller (more local) window in

? http://brainvisa.info/
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Fig. 3. Normalized average of gyrification indices TP and TWP vs. Volume of the
white matter for each subject, window size 7 = 200
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Fig. 4. Gyrification indices, TP and TWP, derived from 3 different window sizes (7),
for the surface of the smallest brain

the spatial domain. Indeed, by increasing [, the window function decreases and
defines a kind of localization around each vertex.

The two GlIs, TP and TWP, were then computed. They are presented in Fig.
2 for 3 different subjects with window size 7 = 200. Visually comparing these
maps suggests that the indices are fairly reproducible across the subjects. For
instance, the regions with the highest values for TP and TWP are consistently



Fig. 5. Average of gyrification indices, TP and TWP, of all 20 subjects derived from
3 different window sizes (7) on the inflated surface of the first subject

the prefrontal cortex, some parts of the parietal lobe, the occipital lobe and the
pole of the temporal lobe. The regions with the lowest values are also consistently
the insula and the central sulcus. The central sulcus is a good example since it is
a very deep fold but with a high regularity and straight shape where we expect
a low measure of folding. The methods in [3,4] give it a high gyrification index
and we believe that it is a depth artefact as shown in Fig. 1(a), whereas both
our GIs produce low values and are therefore able to differentiate depth from
folding complexity.

In Fig. 2, subjects are ordered by increasing size (the volume of the white
matter) from left to right. It is visible that the overall values of GIs are higher



for the largest brain. Indeed, the normalized average values of TP and TWP are
increasing with brain volume, as shown in Fig. 3. For subject s, the average of
TP(i)’s and TWP(i)’s are calculated by

_ 2L TP(i,s)

TP(s) o

(10)

N .
TWP(s) = w (11)

Then all TP(s)’s and TWP(s)’s are normalized by their mean value Z§0=1 TP(s)/20
and 230:1 TWP(s)/20. By this normalization, both TPs and TWPs are shifted
into the same range while their behaviors are preserved. This increasing relation-
ship between the volume of the white matter and total gyrification is expected
and has been studied (see e.g. [4,6]). Fig. 3 shows that TWP produces a larger
effect than TP for this relationship and discriminates smaller brains from larger
ones better than TP.

In Fig. 4, it is shown that the window size parameter 7 can be used to
control the scale of observations for the GIs. At 7 = 20, the spatial scale is fine
and high values are located mostly on the ridge of complex gyri, while low values
are located on the walls of regular sulci. As the window size increases, a more
regional effect becomes visible, with a very smooth and low variations map at
value 7 = 1000 , which gives a coarse scale global observation of the gyrification.

Finally, we computed the group average of both GIs with 7 = 20, 200, 1000
using the cortical surface inter-subject matching presented in [12]. Results are
depicted on an inflated cortical surface in Fig. 5. They show average patterns
similar to those observable on individual subjects, which shows that the GI’s
spatial patterns are reproducible across subjects. Even on these group average
maps, the scaling effect of the window size 7 is visible, which shows that the
inter-subject reproducibility still holds at fine scales to some extent.

4 Conclusion

In this work, we applied graph windowed Fourier transform on the mean cur-
vature function of triangulated human cerebral cortex to assess the degree of
folding. Based on the frequency distribution at each vertex of the triangulation,
two gyrification indices have been proposed and we showed their relevance.

The proposed indices were computed for a group of cerebral cortices. The
resulting maps suggest that the prefrontal cortex, some parts of the parietal
lobe and the occipital lobe are consistently the most folded part of the brain. As
expected, the insula and the central sulcus take the lowest values due to their high
regularity compared to other regions. The relationship between average values
of the indices and brain volume confirms that the larger brains are twistier.
Moreover, changing the size of window function brings interesting information
about the degree of folding in different scales.



For future works, we are going to apply this method on a large database to
study the correlation between anatomical parameters and behavioral patterns
on the quantity of gyrification of different regions of human cerebral cortex.
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