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Abstract. A multi-atlas approach is proposed for the automatic segmentation of 

nine different structures in a set of head and neck CT images for radiotherapy. 

The approach takes advantage of a training dataset of 25 images to build aver-

age head and neck atlases of high-quality. By registering patient images with 

the atlases at the global level, structures of interest are aligned approximately in 

space, which allowed multi-atlas-based segmentations and correlation-based la-

bel fusion to be performed at the local level in the following steps. Qualitative 

and quantitative evaluations are performed on a set of 15 testing images. As 

shown by the results, mandible, brainstem and parotid glands are segmented ac-

curately (mean volume DSC>0.8). The segmentation accuracy for the optic 

nerves is also improved over previously reported results (mean DSC above 0.61 

compared with 0.52 for previous results).  

1 Introduction 

Modern radiotherapies for patients with head and neck cancer have critical require-

ments on the delivery of radiation to the regions to be treated while maintaining a low 

level of radiation dose to the surrounding organs at risk (OAR). To fulfill the re-

quirements, a precise delineation of both treated regions and OARs must be per-

formed in the planning phase of the therapy, which is an extremely time-consuming 

task performed conventionally by the physicians on CT images manually.  

In recent years, automatic approaches have been proposed to delineate various 

structures to be treated and/or spared in CT images, which include the parotid gland 

[1-7], brainstem [6-8], thyroid gland [9], mandible [7], optical track [8, 10], and neck 

lymph node regions [11]. A plethora of techniques and quantitative assessments can 

be found in [12]. Nevertheless, most of the automatic methods focus on one or a few 

structures, and a comprehensive assessment on the various automatic segmentation 

techniques for multiple structures has not yet been reported, in part, due to a lack of 

publicly available datasets with associated manual delineations. 

Based on such a dataset that is made available by the organizers of the 2015 

MICCAI Head and Neck Auto Segmentation Challenge, we propose an automatic 

multi-atlas approach for the segmentation of 9 structures in head and neck CT images. 



 

By comparing the automatic segmentation results with the provided manual delinea-

tions, the robustness and flexibility of the proposed approach are demonstrated. 

2 Data Description 

A total of 33 clinical head and neck CT images (transverse scan) were provided by the 

organizers of the challenge for training purpose. Among the 33, 25 were assigned as 

the primary training set, in which the slice thickness was 3 mm for 14, 2.5 mm for 10, 

and 1.25 mm for one. All of the primary training images were associated with manual 

delineations for 7 structures which were the brainstem, mandible, left and right optic 

nerves, optic chiasm, and left and right parotid glands. Manual delineations for the 

bilateral submandibular glands (two individual structures) were provided for 21 out of 

the 25 cases on the left side and 19 out of the 25 cases on the right side. Meanwhile, 

the remaining 8 training images were assigned as an optional training set, on which 

manual delineations were provided for all the aforementioned structures but not for 

the mandibles and the left and right submandibular glands.  

A total of 10 CT images were provided for offline testing and 5 images were pro-

vided for online testing. Manual delineations were not provided at the testing stage 

but were made available after the submission of testing results. Among the 15 images, 

slice thickness was 3 mm for 8, 2.5 mm for 6, and 2 mm for the remaining one.  

All of the training and testing images had in-plane dimension of 512×512 voxels. 

The in-plane voxel sizes were isotropic and vary from 0.76 mm to 1.27 mm, while for 

the majority of the cases the in-plane voxel sizes were around 1 mm. 

3 Method 

3.1 Overview 

The framework introduced here is based on the multi-atlas approach proposed previ-

ously for the segmentation of thyroid glands [9]. The framework was built based on 

the primary training set, while tuning and adjustments were achieved with the help of 

the optional training set. 

3.2 Global Registrations and Creation of Average Head and Neck Atlases 

One image in the training set is selected as a template in the initial step, such that all 

the other training images can be aligned with it at the global level. Due to the flexible 

neck structure in head and neck CT images, a global-level affine registration with 12 

degrees of freedom (rotation, translation, scaling, and sheering) is performed at the 

initial step to align images with the template. Following the affine registration, a non-

rigid registration at a more detailed level is needed to further align the images. In 

order to reduce the bias that could be introduced by the anatomy of any individual 

template image, our solution was to build an average atlas of the population. Using 

the 25 images in the primary training set, we were able to build average atlases fol-



lowing the method proposed in [13]. Since nearly equal portions of the training imag-

es are of either 3 mm or 2.5 mm slice thicknesses, we elected to build two atlases, one 

with 3 mm slice thickness and the other with 2.5 mm slice thickness. After a visual 

inspection, we identified two images (0522c0003 for the 3 mm atlas and 0522c0253 

for the 2.5 mm atlas) covering sufficient region from the top of the skull to the upper 

chest region and showing mostly normal anatomy and posture as the initial templates.  

The algorithm for nonrigid registration on the global level was Adaptive Bases 

Algorithm (ABA) [14] modeling the nonrigid deformation field as a linear combina-

tion of 3D radial basis functions (RBF). Normalized mutual information was used as 

the measure of similarity between the target and moving images in a gradient-descent 

optimization. Since the alignment was intended to achieve a normalization of global 

posture and an approximate spatial alignment of corresponding anatomical structures, 

3D RBF’s were placed at a density of one per 20 mm, which led to a smooth defor-

mation. The registration was implemented in a multi-resolution manner, in which the 

first iteration started 2 levels lower than the full-resolution. At the end of each itera-

tion, the forwardly registered training images were averaged and then deformed by 

the average of all the backward deformation fields from the current atlas. The de-

formed image was then used as the atlas in the next iteration. The procedure con-

verged after 5 iterations.  

3.3 Multi-atlas Segmentation of Structures on a Local Level 

With the average atlas established, we performed global affine and nonrigid registra-

tions between the atlas and the patient images to be analyzed using the same afore-

mentioned registration parameters. In the following step, since corresponding anatom-

ical structures were already aligned approximately, we were able to define local 

bounding boxes with the structures of interest at the center while maintaining margins 

comparable to the scale of the structure in all 6 directions in 3D, and then automati-

cally place them back onto the globally aligned patient images for cropping. 

Since the training images were also globally aligned with the average atlas, crop-

ping local bounding boxes on the aligned training images allowed us to have a set of 

local-level atlases. Local nonrigid registrations were then performed between the 

cropped patient image and all the cropped atlases, with parameters favoring detailed 

deformations, e.g. the RBF density was increased to one per 8 mm.  

Due to the existence of structures having similar density as adjacent tissues, e.g. 

brainstem against the surrounding soft tissues and mandible against the teeth, which 

results in less crisp boundaries in CT scans, we believed it was preferable to have 

more flexibility in the way local deformation fields were modeled. Therefore in addi-

tion to ABA we also performed local registrations using the Symmetric Normalization 

(SyN) algorithm from the Advance Normalization Tools (ANTS) [15] for modeling 

highly regularized small-scale local displacements. 

After all atlases were aligned with the new image on the local level, local nonrigid 

transformations were applied to the manual delineations of the structures of interest 

(deformed from the patient image space using global transformations and then 



 

cropped locally) when they were available. This would give us a set of N segmenta-

tions for the structure. We fused them into segmentation M as a weighted sum: 
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The correlation coefficient cci was calculated between the local patient image and the 

ith locally deformed atlas image. As a result, segmentations from atlases that were 

more similarly aligned with the patient image would have higher weights in the com-

bined segmentation. To focus on the regions of interest, the correlations were only 

calculated inside a mask defined as the union of all segmentations from the N local 

atlases. Furthermore, to eliminate the impact of dissimilar atlases, the weights were 

ranked and those in the lower half were set to zero in the combination. 

Since it was convenient to define bounding boxes to cover multiple structures 

when they were close to each other, the left and right optic nerves and the chiasm 

were segmented within one box covering the region of the eyes, and the left and right 

submandibular glands were segmented in one box covering the lower chin region. All 

the other 4 structures were segmented with individual boxes. 

3.4 Post-processing for Automatic Segmentation Results 

After the locally combined segmentations were generated, they were reconstructed in 

the global space and transformed back onto each patient image using the inverse 

transformations obtained from global registrations, and finally thresholded into binary 

masks. For most masks, since the original binary manual delineations were normal-

ized to [0, 255], and the default threshold was set to 127 (half of the maximum). The 

threshold was set to 105 in the masks for the optical nerves and chiasm due to a lower 

rate of overlapping in the combination (combined masks having maximum value 

around 210-220 in general) as a result of fine-tuning (thresholds tried at 115, 105, 95, 

and 85) on the optional training set. For the brainstem, following the guideline for 

manual delineations, landmarks like the posterior clinoid process and C1 vertebrae 

were localized on the average atlases and transformed back into the patient images 

with global transformations to determine the levels for trimming. 

3.5 Final Selection of Global Atlases and Local Registration Algorithms 

The two global atlases and the two local registration algorithms led to a total of 4 

combinations which were denote atlas_2.5mm-ABA, atlas_2.5mm-SyN, atlas_3mm-

ABA, and atlas_3mm-SyN. When applied on patient images, the final structure-

dependent selections of global atlases and local registration algorithms were made 

based on experiments carried out on the optional training set. Measured by volume 

Dice similarity coefficient (DSC) compared to manual delineations, atlas_2.5mm-

ABA performed the best on parotid (L and R), optic nerve (L and R), and chiasm, 



while atlas_2.5mm-SyN yielded the best performance on brainstem. Due to the lack 

of manual segmentations associated with the optional training set, atlas_2.5mm-ABA 

was selected for submandibular gland (L and R) for showing the least amount of un-

der-segmentations and atlas_3.0mm-SyN was selected for the mandible for showing 

the least amount of over-segmentations into the teeth based upon visual inspection. 

Table 1. Volume DSC between manual and automatic segmentations for all structures on both 

testing datasets. 

Struct 

Case 

Brain

Stem 

Chi-

asm 

Man-

dible 

Nerve

_L 

Nerve

_R 

Parot-

id_L 

Parot-

id_R 

Sub_

L 

Sub_

R 

0555 0.729 0.341 0.883 0.596 0.533 0.791 0.830 0.571 0.574 

0576 0.889 0.505 0.857 0.711 0.702 0.814 0.870 0.594 0.501 

0598 0.814 0.550 0.919 0.675 0.669 0.826 0.868 0.813 0.756 

0659 0.808 0.539 0.943 0.531 0.530 0.781 0.760 0.745 0.671 

0661 0.714 0.482 0.927 0.747 0.649 0.793 0.823 0.707 0.684 

0667 0.870 0.353 0.911 0.699 0.638 0.850 0.880 0.776 0.757 

0669 0.893 0.552 0.932 0.734 0.550 0.811 0.831 0.565 0.725 

0708 0.717 0.121 0.915 0.563 0.679 0.851 0.865 0.724 0.782 

0727 0.821 0.399 0.940 0.650 0.703 0.860 0.800 0.795 0.802 

0746 0.756 0.077 0.888 0.516 0.498 0.770 0.649 0.597 0.740 

0788 0.780 0.432 0.935 0.624 0.726 0.843 0.843 0.746 0.562 

0806 0.884 0.391 0.941 0.609 0.540 0.721 0.744 0.790 0.767 

0845 0.846 0.386 0.920 0.649 0.564 0.862 0.827 0.560 0.568 

0857 0.802 0.451 0.929 0.709 0.578 0.777 0.764 0.791 0.714 

0878 0.717 0.125 0.915 0.647 0.588 0.819 0.861 0.757 0.543 

Mean 0.803 0.380 0.917 0.644 0.610 0.811 0.814 0.702 0.676 

4 Results 

For the 15 images in both testing datasets, as shown in Table 1, 3D volume DSC was 

calculated between the automatic and manual segmentations. It can be seen that the 

automatic segmentation reached 0.917 mean DSC for mandible, and the mean DSC’s 

for brainstem and parotid (L and R) were all above 0.8. The mean DSC’s for optic 

nerve (L and R) were both above 0.61 while the lowest mean DSC was observed on 

the Chiasm (0.380). Measured by the 95th percentile of Hausdorff distance (HD), as 

shown in Table 2, mandible and optic nerve (L and R) showed the best results (mean 

HD<3.2 mm), while parotid (L and R) showed the worst (mean HD>6.4 mm). Quali-

tative segmentation results are shown in Fig. 1 for one case (0522c0788) from the 

onsite testing set as an example, where the manual contours are in green color and the 

contours of the corresponding automatic segmentations are in red color.  



 

Table 2. The 95th percentile Hausdorff distance (in mm) between manual and automatic 

segmentations for all structures on both testing datasets. 

Struct 

Case 

Brain

Stem 

Chi-

asm 

Man-

dible 

Nerve

_L 

Nerve

_R 

Parot-

id_L 

Parot-

id_R 

Sub_

L 

Sub_

R 

0555 5.65 4.08 4.48 2.75 4.26 4.96 5.13 6.03 8.23 

0576 2.90 4.11 3.52 1.79 2.50 5.96 3.76 6.62 8.27 

0598 4.54 4.48 1.41 2.67 2.33 4.99 3.99 4.10 3.60 

0659 5.05 2.57 1.42 3.63 3.15 5.52 6.01 6.90 6.47 

0661 8.03 3.08 1.96 1.99 2.48 6.29 6.27 3.56 4.41 

0667 3.17 4.40 2.50 2.37 3.14 8.98 3.57 7.44 4.39 

0669 2.92 2.92 2.50 2.03 3.61 7.52 7.13 5.53 3.76 

0708 8.86 3.98 2.08 3.22 2.50 3.92 3.56 4.62 3.76 

0727 3.96 4.02 2.33 3.40 3.00 4.21 8.86 2.96 2.93 

0746 6.00 4.47 2.89 4.12 7.28 6.87 10.18 5.93 4.65 

0788 7.35 5.17 2.81 2.67 2.33 8.25 4.49 3.96 6.23 

0806 3.43 4.29 1.79 3.36 2.27 15.62 10.18 3.41 3.92 

0845 4.82 4.08 2.50 2.15 3.20 4.66 6.28 9.07 8.02 

0857 4.10 4.39 2.81 2.09 2.92 9.24 11.17 3.81 5.05 

0878 6.44 5.86 2.33 3.11 2.33 7.54 5.89 6.31 12.45 

Mean 5.15 4.13 2.49 2.76 3.15 6.97 6.43 5.35 5.74 

5 Conclusion and Discussions 

In this work we proposed a multi-atlas approach for the segmentation of multiple 

structures in the head and neck CT images for radiotherapies. Based on global affine 

and nonrigid registrations, a patient image was first aligned with an average head and 

neck CT atlas on the global level. The aligned image was further processed by per-

forming local nonrigid registrations with multiple atlases. The subsequent labels de-

formed from the atlases were then combined with weights determined by the local 

correlation coefficients between the patient image and the registered atlas images.  

Compared with previous results in [8], where mean DSC was around 0.52, the 

segmentation of optic nerves showed improvements. Since delineation of thin struc-

tures can be affected drastically by the image’s slice thickness, in addition to the con-

tribution of multiple atlases, the improvement could also be attributed to atlases with 

2.5 mm slice thickness (3 mm in [8]). Moreover, the method in [11] which incorpo-

rated 30 atlases in which 27 had slice thickness of 2.5 mm or less yielded better re-

sults on optic nerves when evaluated by DSC (mean DSC=0.74), although the results 

were not shown to be better when assessed by HD (mean HD=3.75 mm).  

Tested on a workstation with two quad-core 2.50 GHz Intel Xeon CPU and 16 GB 

of memory, the total running time for segmenting a structure consists of around 5 

minutes for global affine registration, 25 minutes for global nonrigid registration, and 

around 60 minutes for local nonrigid registration in the largest bounding box. Other 



processing time (image cropping, mask padding, thresholding, and deformation) can 

take around another 10 minutes. The processing time could potentially  be reduced by 

further tuning the local registration parameters without significantly sacrificing the 

quality of the registration result, and the impact could be minimized after atlas fusion. 

The proposed framework has the flexibility to introduce more atlas images into 

the local multi-atlas step. Moreover, with more atlases available, more sophisticated 

selection and fusion techniques could be applied to improve the segmentation of 

structures of more inter-subject variability, e.g. the submandibular gland and the top 

side of the parotid gland. 

 

Fig. 1. Segmentation contours overlapped with CT image for 0522c0788.  Top row left to right: 

BrainStem, Parotid_L, and Parotid_R. Middle row left to right: Chiasm, OpticNerve_L, and 

OpticNerve_R. Bottom row left to right: Mandible, Submandibular_L, and Submandibular_R. 

Auto: red. Manual: green. 
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