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Abstract. A multi-atlas approach is proposed for the automatic segmentation of
nine different structures in a set of head and neck CT images for radiotherapy.
The approach takes advantage of a training dataset of 25 images to build aver-
age head and neck atlases of high-quality. By registering patient images with
the atlases at the global level, structures of interest are aligned approximately in
space, which allowed multi-atlas-based segmentations and correlation-based la-
bel fusion to be performed at the local level in the following steps. Qualitative
and quantitative evaluations are performed on a set of 15 testing images. As
shown by the results, mandible, brainstem and parotid glands are segmented ac-
curately (mean volume DSC>0.8). The segmentation accuracy for the optic
nerves is also improved over previously reported results (mean DSC above 0.61
compared with 0.52 for previous results).

1 Introduction

Modern radiotherapies for patients with head and neck cancer have critical require-
ments on the delivery of radiation to the regions to be treated while maintaining a low
level of radiation dose to the surrounding organs at risk (OAR). To fulfill the re-
quirements, a precise delineation of both treated regions and OARs must be per-
formed in the planning phase of the therapy, which is an extremely time-consuming
task performed conventionally by the physicians on CT images manually.

In recent years, automatic approaches have been proposed to delineate various
structures to be treated and/or spared in CT images, which include the parotid gland
[1-7], brainstem [6-8], thyroid gland [9], mandible [7], optical track [8, 10], and neck
lymph node regions [11]. A plethora of techniques and quantitative assessments can
be found in [12]. Nevertheless, most of the automatic methods focus on one or a few
structures, and a comprehensive assessment on the various automatic segmentation
techniques for multiple structures has not yet been reported, in part, due to a lack of
publicly available datasets with associated manual delineations.

Based on such a dataset that is made available by the organizers of the 2015
MICCAI Head and Neck Auto Segmentation Challenge, we propose an automatic
multi-atlas approach for the segmentation of 9 structures in head and neck CT images.



By comparing the automatic segmentation results with the provided manual delinea-
tions, the robustness and flexibility of the proposed approach are demonstrated.

2 Data Description

A total of 33 clinical head and neck CT images (transverse scan) were provided by the
organizers of the challenge for training purpose. Among the 33, 25 were assigned as
the primary training set, in which the slice thickness was 3 mm for 14, 2.5 mm for 10,
and 1.25 mm for one. All of the primary training images were associated with manual
delineations for 7 structures which were the brainstem, mandible, left and right optic
nerves, optic chiasm, and left and right parotid glands. Manual delineations for the
bilateral submandibular glands (two individual structures) were provided for 21 out of
the 25 cases on the left side and 19 out of the 25 cases on the right side. Meanwhile,
the remaining 8 training images were assigned as an optional training set, on which
manual delineations were provided for all the aforementioned structures but not for
the mandibles and the left and right submandibular glands.

A total of 10 CT images were provided for offline testing and 5 images were pro-
vided for online testing. Manual delineations were not provided at the testing stage
but were made available after the submission of testing results. Among the 15 images,
slice thickness was 3 mm for 8, 2.5 mm for 6, and 2 mm for the remaining one.

All of the training and testing images had in-plane dimension of 512x512 voxels.
The in-plane voxel sizes were isotropic and vary from 0.76 mm to 1.27 mm, while for
the majority of the cases the in-plane voxel sizes were around 1 mm.

3 Method

3.1  Overview

The framework introduced here is based on the multi-atlas approach proposed previ-
ously for the segmentation of thyroid glands [9]. The framework was built based on
the primary training set, while tuning and adjustments were achieved with the help of
the optional training set.

3.2  Global Registrations and Creation of Average Head and Neck Atlases

One image in the training set is selected as a template in the initial step, such that all
the other training images can be aligned with it at the global level. Due to the flexible
neck structure in head and neck CT images, a global-level affine registration with 12
degrees of freedom (rotation, translation, scaling, and sheering) is performed at the
initial step to align images with the template. Following the affine registration, a non-
rigid registration at a more detailed level is needed to further align the images. In
order to reduce the bias that could be introduced by the anatomy of any individual
template image, our solution was to build an average atlas of the population. Using
the 25 images in the primary training set, we were able to build average atlases fol-



lowing the method proposed in [13]. Since nearly equal portions of the training imag-
es are of either 3 mm or 2.5 mm slice thicknesses, we elected to build two atlases, one
with 3 mm slice thickness and the other with 2.5 mm slice thickness. After a visual
inspection, we identified two images (0522c0003 for the 3 mm atlas and 0522c0253
for the 2.5 mm atlas) covering sufficient region from the top of the skull to the upper
chest region and showing mostly normal anatomy and posture as the initial templates.

The algorithm for nonrigid registration on the global level was Adaptive Bases
Algorithm (ABA) [14] modeling the nonrigid deformation field as a linear combina-
tion of 3D radial basis functions (RBF). Normalized mutual information was used as
the measure of similarity between the target and moving images in a gradient-descent
optimization. Since the alignment was intended to achieve a normalization of global
posture and an approximate spatial alignment of corresponding anatomical structures,
3D RBF’s were placed at a density of one per 20 mm, which led to a smooth defor-
mation. The registration was implemented in a multi-resolution manner, in which the
first iteration started 2 levels lower than the full-resolution. At the end of each itera-
tion, the forwardly registered training images were averaged and then deformed by
the average of all the backward deformation fields from the current atlas. The de-
formed image was then used as the atlas in the next iteration. The procedure con-
verged after 5 iterations.

3.3 Multi-atlas Segmentation of Structures on a Local Level

With the average atlas established, we performed global affine and nonrigid registra-
tions between the atlas and the patient images to be analyzed using the same afore-
mentioned registration parameters. In the following step, since corresponding anatom-
ical structures were already aligned approximately, we were able to define local
bounding boxes with the structures of interest at the center while maintaining margins
comparable to the scale of the structure in all 6 directions in 3D, and then automati-
cally place them back onto the globally aligned patient images for cropping.

Since the training images were also globally aligned with the average atlas, crop-
ping local bounding boxes on the aligned training images allowed us to have a set of
local-level atlases. Local nonrigid registrations were then performed between the
cropped patient image and all the cropped atlases, with parameters favoring detailed
deformations, e.g. the RBF density was increased to one per 8 mm.

Due to the existence of structures having similar density as adjacent tissues, e.g.
brainstem against the surrounding soft tissues and mandible against the teeth, which
results in less crisp boundaries in CT scans, we believed it was preferable to have
more flexibility in the way local deformation fields were modeled. Therefore in addi-
tion to ABA we also performed local registrations using the Symmetric Normalization
(SyN) algorithm from the Advance Normalization Tools (ANTS) [15] for modeling
highly regularized small-scale local displacements.

After all atlases were aligned with the new image on the local level, local nonrigid
transformations were applied to the manual delineations of the structures of interest
(deformed from the patient image space using global transformations and then



cropped locally) when they were available. This would give us a set of N segmenta-
tions for the structure. We fused them into segmentation M as a weighted sum:

N
cc;
M :ZwiMi,where Wy = ——— (1)
=1 ZCCi
i1

The correlation coefficient cc; was calculated between the local patient image and the
ith locally deformed atlas image. As a result, segmentations from atlases that were
more similarly aligned with the patient image would have higher weights in the com-
bined segmentation. To focus on the regions of interest, the correlations were only
calculated inside a mask defined as the union of all segmentations from the N local
atlases. Furthermore, to eliminate the impact of dissimilar atlases, the weights were
ranked and those in the lower half were set to zero in the combination.

Since it was convenient to define bounding boxes to cover multiple structures
when they were close to each other, the left and right optic nerves and the chiasm
were segmented within one box covering the region of the eyes, and the left and right
submandibular glands were segmented in one box covering the lower chin region. All
the other 4 structures were segmented with individual boxes.

3.4  Post-processing for Automatic Segmentation Results

After the locally combined segmentations were generated, they were reconstructed in
the global space and transformed back onto each patient image using the inverse
transformations obtained from global registrations, and finally thresholded into binary
masks. For most masks, since the original binary manual delineations were normal-
ized to [0, 255], and the default threshold was set to 127 (half of the maximum). The
threshold was set to 105 in the masks for the optical nerves and chiasm due to a lower
rate of overlapping in the combination (combined masks having maximum value
around 210-220 in general) as a result of fine-tuning (thresholds tried at 115, 105, 95,
and 85) on the optional training set. For the brainstem, following the guideline for
manual delineations, landmarks like the posterior clinoid process and C1 vertebrae
were localized on the average atlases and transformed back into the patient images
with global transformations to determine the levels for trimming.

3.5  Final Selection of Global Atlases and Local Registration Algorithms

The two global atlases and the two local registration algorithms led to a total of 4
combinations which were denote atlas_2.5mm-ABA, atlas_2.5mm-SyN, atlas_3mm-
ABA, and atlas_3mm-SyN. When applied on patient images, the final structure-
dependent selections of global atlases and local registration algorithms were made
based on experiments carried out on the optional training set. Measured by volume
Dice similarity coefficient (DSC) compared to manual delineations, atlas_2.5mm-
ABA performed the best on parotid (L and R), optic nerve (L and R), and chiasm,



while atlas_2.5mm-SyN vyielded the best performance on brainstem. Due to the lack
of manual segmentations associated with the optional training set, atlas_2.5mm-ABA
was selected for submandibular gland (L and R) for showing the least amount of un-
der-segmentations and atlas_3.0mm-SyN was selected for the mandible for showing
the least amount of over-segmentations into the teeth based upon visual inspection.

Table 1. Volume DSC between manual and automatic segmentations for all structures on both
testing datasets.

ruct | Brain - Chi- Man-  Nerve Nerve Parot- Parot- Sub_  Sub_
CaseN| Stem  asm dible L R id_L id_R L R
0555 | 0.729 0341 0883 0596 0533 0.791 0.830 0571 0.574

0576 | 0.889 0505 0857 0711 0.702 0.814 0.870 0.594 0.501
0598 | 0.814 0550 0919 0.675 0669 0826 0.868 0.813 0.756
0659 | 0.808 0539 0943 0531 0530 0781 0760 0.745 0.671
0661 | 0.714 0482 0927 0.747 0649 0793 0.823 0.707 0.684
0667 | 0870 0353 0911 0699 0.638 0850 0.880 0.776 0.757
0669 | 0.893 0552 0932 0734 0550 0.811 0.831 0565 0.725
0708 | 0.717 0.121 0915 0563 0.679 0.851 0.865 0.724 0.782
0727 | 0821 0399 0940 0.650 0.703 0.860 0.800 0.795  0.802
0746 | 0.756 0.077 0.888 0516 0498 0.770 0649 0597 0.740
0788 | 0.780 0.432 0935 0.624 0.726 0.843 0.843 0.746  0.562
0806 | 0.884 0391 0941 0609 0540 0721 0.744 0.790 0.767
0845 | 0.846 0386 0920 0.649 0.564 0.862 0.827 0.560 0.568
0857 | 0.802 0451 0929 0709 0578 0777 0.764 0.791 0.714
0878 | 0.717 0.125 0915 0.647 0588 0819 0861 0.757 0.543
Mean | 0.803 0.380 0.917 0.644 0.610 0.811 0.814 0.702 0.676

4 Results

For the 15 images in both testing datasets, as shown in Table 1, 3D volume DSC was
calculated between the automatic and manual segmentations. It can be seen that the
automatic segmentation reached 0.917 mean DSC for mandible, and the mean DSC’s
for brainstem and parotid (L and R) were all above 0.8. The mean DSC’s for optic
nerve (L and R) were both above 0.61 while the lowest mean DSC was observed on
the Chiasm (0.380). Measured by the 95th percentile of Hausdorff distance (HD), as
shown in Table 2, mandible and optic nerve (L and R) showed the best results (mean
HD<3.2 mm), while parotid (L and R) showed the worst (mean HD>6.4 mm). Quali-
tative segmentation results are shown in Fig. 1 for one case (0522c0788) from the
onsite testing set as an example, where the manual contours are in green color and the
contours of the corresponding automatic segmentations are in red color.



Table 2. The 95th percentile Hausdorff distance (in mm) between manual and automatic
segmentations for all structures on both testing datasets.

ruct | Brain  Chi- Man-  Nerve Nerve Parot- Parot- Sub_ Sub_
CaseN| Stem asm dible L R id_L id_ R L R
0555 | 5.65 4.08 4.48 2.75 4.26 4.96 5.13 6.03 8.23
0576 | 2.90 411 3.52 1.79 2.50 5.96 3.76 6.62 8.27
0598 | 4.54 4.48 141 2.67 2.33 4.99 3.99 4.10 3.60
0659 | 5.05 2.57 1.42 3.63 3.15 5.52 6.01 6.90 6.47
0661 | 8.03 3.08 1.96 1.99 2.48 6.29 6.27 3.56 441
0667 | 3.17 4.40 2.50 2.37 3.14 8.98 3.57 7.44 4.39
0669 | 2.92 2.92 2.50 2.03 3.61 7.52 7.13 5.53 3.76
0708 | 8.86 3.98 2.08 3.22 2.50 3.92 3.56 4.62 3.76
0727 | 3.96 4.02 2.33 3.40 3.00 4.21 8.86 2.96 2.93
0746 | 6.00 4.47 2.89 4.12 7.28 6.87 10.18 5.93 4.65
0788 | 7.35 5.17 2.81 2.67 2.33 8.25 4.49 3.96 6.23
0806 | 3.43 4.29 1.79 3.36 2.27 1562 1018 341 3.92
0845 | 4.82 4.08 2.50 2.15 3.20 4.66 6.28 9.07 8.02
0857 | 4.10 4.39 2.81 2.09 2.92 9.24 1117 381 5.05
0878 | 6.44 5.86 2.33 311 2.33 7.54 5.89 6.31 12.45
Mean | 5.15 4.13 2.49 2.76 3.15 6.97 6.43 5.35 5.74

5 Conclusion and Discussions

In this work we proposed a multi-atlas approach for the segmentation of multiple
structures in the head and neck CT images for radiotherapies. Based on global affine
and nonrigid registrations, a patient image was first aligned with an average head and
neck CT atlas on the global level. The aligned image was further processed by per-
forming local nonrigid registrations with multiple atlases. The subsequent labels de-
formed from the atlases were then combined with weights determined by the local
correlation coefficients between the patient image and the registered atlas images.

Compared with previous results in [8], where mean DSC was around 0.52, the
segmentation of optic nerves showed improvements. Since delineation of thin struc-
tures can be affected drastically by the image’s slice thickness, in addition to the con-
tribution of multiple atlases, the improvement could also be attributed to atlases with
2.5 mm slice thickness (3 mm in [8]). Moreover, the method in [11] which incorpo-
rated 30 atlases in which 27 had slice thickness of 2.5 mm or less yielded better re-
sults on optic nerves when evaluated by DSC (mean DSC=0.74), although the results
were not shown to be better when assessed by HD (mean HD=3.75 mm).

Tested on a workstation with two quad-core 2.50 GHz Intel Xeon CPU and 16 GB
of memory, the total running time for segmenting a structure consists of around 5
minutes for global affine registration, 25 minutes for global nonrigid registration, and
around 60 minutes for local nonrigid registration in the largest bounding box. Other



processing time (image cropping, mask padding, thresholding, and deformation) can
take around another 10 minutes. The processing time could potentially be reduced by
further tuning the local registration parameters without significantly sacrificing the
quality of the registration result, and the impact could be minimized after atlas fusion.

The proposed framework has the flexibility to introduce more atlas images into
the local multi-atlas step. Moreover, with more atlases available, more sophisticated
selection and fusion techniques could be applied to improve the segmentation of
structures of more inter-subject variability, e.g. the submandibular gland and the top
side of the parotid gland.

ANy

Fig. 1. Segmentation contours overlapped with CT image for 0522c0788. Top row left to right:
BrainStem, Parotid_L, and Parotid_R. Middle row left to right: Chiasm, OpticNerve_L, and
OpticNerve_R. Bottom row left to right: Mandible, Submandibular_L, and Submandibular_R.
Auto: red. Manual: green.
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