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1 Introduction

Multi-atlas segmentation approaches register a set of labeled atlases to a given target
image and combine their contributions using a label fusion strategy to provide a la-
beled image. Although this kind of approaches attains suitable results on brain tissue
classification tasks, registration issues can bias the label estimation. A non-local strat-
egy -known as label fusion- reduces the misalignment influence by allowing the spatial
neighbors of a voxel to vote for its label according to a weighting function. Therefore,
the selection of such a function is a critical factor for achieving an accurate segmen-
tation; such function can be either similarity-based [1] or reconstruction-based [2]. In
general, both of above approaches demand a voxel representation, being the patch one
the most commonly considered. However, those label fusion methodologies present the
following issues: i) patch similarity and label affinity among voxels may be unrelated;
ii) similarity measures are only based on intensity obviating the label information; and
iii) although the atlas patches are fully labeled, only the central voxel of the target patch
is classified.

We propose a new patch-based segmentation dealing with above issues. To this end,
we weight the label votes using a generative probabilistic approach: The probability of
the target patch being generated by the model of an atlas patch is computed; a Gibbs
distribution spatially constrains the model parameters. This approach allows us to esti-
mate the label of the whole target patch using the class conditional probability for each
voxel. Finally, the use of overlapping neighborhoods leads to estimate several times the
voxel labels. Hence, the multiple estimations are combined using a 3D sliding Gaussian
window.

2 Method

Given a target image Xq, the segmentation process consists in finding the label map
Lq for the target image using a registered training dataset, X={Xn,Ln:n=1, . . . ,N}.
The intensity and label images of the n-th atlas compose the pair {Xn,Ln}, where
Xn={xn

r∈R:r∈Ω} and Ln={ln
r∈[1,C]:r∈Ω}, the value r indexes the spatial elements,

and C is the number of possible classes.
For each voxel r, we extract a set of patches Pr = {βn

y ⊂Xn,γn
y ⊂ Ln:y∈η(r)},

where η(r) is a neighborhood around r, and denote the target patch as βq
r ⊂Xq. In this

sense, each patch is an arrange βn
y = {xn

s : ‖y− s‖ < ξ}, being ξ the patch radius. In
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order to reduce the computational time and remove outlying patches, we pre-select the
most similar candidate patches by computing the structural similarity measurement ss
[3]:

ss(y,r) =

(
2µyµr

µ2
y +µ2

r

)(
2σyσr

σ2
y +σ2

r

)
(1)

Dr =
{
βn

y : ss(y,r)≥ 0.9
}

(2)

Figure 1 shows the process for extracting patches.
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Fig. 1: Patches are extracted from the intensity and labeled images on the training
dataset, structural similarity is used to select de most similar patches
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2.1 Weighted computation

Aiming to take into account the information provided by the labels in the patch fusion
step, we use a generative probabilistic method as a weighting criterion. The procedure
is as follow. We propose to estimate the label lq

r of the r-th voxel as double weighted
voting: the first one accounts for the contribution of the neighboring patches, the second
one weights the overlapping neighborhoods. Equation (3) introduces the resulting label
fusion,

lr = argmax
c

∑
r′∈β n

r

k(r,r′) ∑
βn

y∈Dr

wn
ryP(xr|Φn

y,c), (3)

where k(r,r′) = 1
Zk

exp
(
‖r− r′‖/2h2

)
is the sliding window with size h∈R+ and nor-

malization constant zk∈R+, wn
ry∈[0,1] is the similarity between βn

y and βq
r , the proba-

bility of the r-th voxel to belong to the class c and being generated by the patch βn
y is

P(xr|Φn
y,c)∈[0,1], and Φn

y,c are the parameters of the generative model for βn
y . Particu-

larly, we assume that each atlas patch is modeled by a mixture of Gaussian. Hence, β n
y

is represented by the set of parameters Φn
y ={µn

yc,σ
n
yc,v

n
yc} computed as:

µ
n
yc =E{xn

r |ln
r = c : ‖y− r‖< ξ} (4)

σ
n
yc =E{(xn

r −µ
n
yc)(x

n
r −µ

n
yc)

T |ln
r = c : ‖y− r′‖< ξ} (5)

vn
yc =

{
vn

rc = ∑
s∈ε(r)

1−δ (ln
s − c) : ‖y− r′‖< ξ

}
, (6)

Where the 6-neighboring cliques, ε(r), provide a spatial smoothness and δ (·) is Dirac
function. As a result, the probability P(xr|Φn

y,c) is estimated as:

P(xr|Φn
yc) = N (xr|µn

yc,σ
n
yc)G (vn

rc) (7)

N (x|µ,σ) is a Gaussian distribution with mean µ∈R and standard deviation σ∈R+,
and G (z) = 1

ZG
exp(−z) is the Gibbs distribution with normalization constant ZG∈R+.

Finally, assuming that the more similar the patches, the larger the probabilities, we
define the patch-wise similarity wn

ry as the probability of the target patch being generated
by the mixture of gaussians with parameters Φn

y :

wn
ry(β

q
r ,β

n
y ) = ∏

s∈βq
r

∑
c
N(s|µn

y,c,σ
n
y,c)P(v

n
r,c) (8)

Figure 2 shows the complete segmentation process

3 Experiments And Results

3.1 Data

Our proposed method was evaluated on the Head and neck Auto-Segmentation chal-
lenge (MICCAI 2015). Three datasets which correspond to: training (25 CT images),
off-site(10 CT images), and on-site(5 CT images) were provided for the challenge orga-
nizers. Training images contain the manual annotations of seven organs, namely Brain-
stem, Chiasm, Mandible, Optic Nerves, Parotid and Submandibular gland. Whereas,
off-site and on-site datasets were used for testing.
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Fig. 2: Proposed segmentation method. For each patch on the dictionary Dr the appear-
ance and shape model are estimated by a normal and Gibbs distributions respec-
tively. The similarities between the neighboring patches and the target patch are
used to measure their contributions. Meanwhile, a gaussian sliding window is
used to weights the overlapping neighborhoods estimations based on a the dis-
tance to the central voxel.
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3.2 Image Preprocessing

Each image in the training Dataset, hereafter known as atlas is affine registered to the
reference test image using the fiducial registration module of the 3D-Slicer software.
The challenge organizers provided the landmarks for the atlases; while for the test ones,
they are manually chosen. Finally, all intensity and label atlas images are non-linearly
registered to each test image. The registration procedure is performed using the ANTS
tool under default parameters: elastic deformation as the mapping function (Elast), MI
as the similarity metric, and 32-bins histograms for estimating the probability density
functions. In order to get a finer alignment, the registration is performed at three sequen-
tial resolution levels: i) the coarsest alignment with a resolution of 1/8×Original space ,
and 100 iterations, ii) the middle resolution 1/4×Original space and 50 iterations, and
iii) the finest deformation with a resolution of 1/2×Original space parameter and 25
iterations, the Gaussian regularization method is employed (σ=3).

3.3 Labeling performance

As aforementioned, the testing dataset is composed of two subsets. The off-site images
were provided with the training dataset, and the on-site images were provided on the
day of the challenge for its segmentation. Only brainstem, parotid glands and mandible
were segmented for the challenge. However, the segmentations for all structures were
computed and compared with the ground truth labels which were provided by the or-
ganizers after the challenge concluding. Segmentation accuracy was measured by Dice
similarity coefficient(DSC), mean and standard deviations of dice scores for off-site and
on-site subsets are shown in the table Table 1.

Structures Off-site On-site Average
Brainstem 0.8626 ± 0.0406 0.8503 ± 0.0587 0.8564 ± 0.0497

Chiasm 0.0697 ± 0.0856 0.0916 ± 0.0750 0.0806 ± 0.0803
Mandible 0.9386 ± 0.0264 0.9230 ± 0.0207 0.9308 ± 0.0236

Optic Nerve L 0.5068 ± 0.1052 0.4564 ± 0.1944 0.4816 ± 0.1498
Optic Nerve R 0.5740 ± 0.0829 0.5382 ± 0.0292 0.5561 ± 0.0561

Parotid L 0.8123 ± 0.0425 0.7204 ± 0.1008 0.7664 ± 0.0717
Parotid R 0.7622 ± 0.0954 0.7451 ± 0.1120 0.7536 ± 0.1037

Submandibular L 0.5293 ± 0.1233 0.5566 ± 0.1148 0.5430 ± 0.1191
Submandibular R 0.5426 ± 0.2051 0.3898 ± 0.1980 0.4662 ± 0.2016

Table 1: Segmentation results for off-site and on-site datasets

4 Discussion and Concluding Remarks

We have presented a novel patch label fusion method based on generative probabilis-
tic approach for weighting the label votes of the neighborhood patches, additionally
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a 3D sliding Gaussian window is used to combine the multiples estimations of the
overlapping neighborhoods. The proposed method obtained 0.85, 0.93, and 0.76 of av-
erage DSC for Brainstem, Mandible, and Parotid glangs respectively. Obtained results
are comparable with state of the art methods assessed in [4]. For the other structures the
segmentation results were less accurate, this can be due to these exhibit high shape vari-
ability and low contrast becoming more complicated its segmentation for patch based
approaches.
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