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Abstract. We present a fully automatic model based system for seg-
menting the mandible, parotid and submandibular glands, brainstem,
optic nerves and the optic chiasm in CT images, which won the MICCAI
2015 Head and Neck Auto Segmentation Grand Challenge. The method
is based on Active Appearance Models (AAM) built from manually seg-
mented examples via a cancer imaging archive provided by the challenge
organisers. High quality anatomical correspondences for the models are
generated using a Minimum Description Length (MDL) Groupwise Im-
age Registration method. A multi start optimisation scheme is used to
robustly match the model to new images. The model has been cross vali-
dated on the training data to a good degree of accuracy, and successfully
segmented all the test data.

1 Introducton

Intensity modulated radiotherapy requires detailed target and tissue sparing
plans derived from accurate segmentations (or contouring) of key organs. Exist-
ing systems for the head and neck organ segmentation are dominated by atlas
based segmentation as evaluated in [2], [5], [7], [12] and [13].

We have used a statistical modelling pipeline to build a model of the head
and neck structures. Systems based on this pipeline have won previous challenges
for knee bone and cartilage [11] and prostate [10]. The model fitting is based
on Active Appearance Models (AAMs) [3] in which the statistics of shape and
image information, and the correlations between them, are calculated from a
training set of images. Various model hierarchies can be defined as appropriate.
For example localisation using a model of the orbit can be followed by a specific
optic nerve model. Variants of AAMs have been extensively developed (see [6]
for a review).

The models were evaluated using Leave-One-Out Cross Validation (LOOCV)
in which each patient case in turn is removed from the model training set, the
statistical models re-built and then used to segment the test case. The resulting
surface segmentation was turned into a partial volume image and thresholded
at a partial volume of 0.5 to form a binary voxel segmentation. These were
then compared with the reference segmentations using the standard DICE over-
lap measure and the 95th percentile Hausdorff distance, using the Plastimatch
software [9].



Our interest in participating in the Head and Neck Auto Segmentation Grand
Challenge was to evaluate how our standard AAM-based pipeline would perform
on the head and neck organs against state of the art algorithms developed for
that task. Our goal is to develop a system which is as generalisable as possible,
and can be applied to a wide variety of clinical and research problems with
minimal customised development.

2 Methods

2.1 Data

The models reported here are built using 33 CT scans from a cancer imaging
archive provided through the ImagEngLab [1]. Voxel based reference segmen-
tations for the mandible, parotid and submandibular glands, brainstem, optic
nerves and the optic chiasm were provided by the organisers. These segmenta-
tions were turned into real valued 3D surfaces using the 0.5 valued iso-surface.
The 3D surfaces and images form the input to the model building process de-
scribed in the rest of this section.

The organisers also provided 10 cases without segmentations to test before
the challenge (the ”off-site” test data) and 5 test cases without segmentations
on the day of the challenge (the ”on-site” test data). The organisers, who have
access to the reference segmentations, were able to analyse our results on these
test datasets to generate DICE and Hausdorff distance measures for each case.

2.2 Generating surface correspondences

Statistical appearance models rely on a large set of anatomically equivalent land-
marks (also known as correspondences) across the region of interest. Generating
good quality correspondences is key to developing generalisable yet specific mod-
els.

To obtain the anatomical correspondences on the surfaces we used a variant
of the Minimum Description Length approach to Groupwise Image Registration
(MDL-GIR) [4]. The MDL-GIR method finds the set of deformations which reg-
ister all the images together as efficiently as possible. This idea is made concrete
by the use of Information Theory to define the amount of information required to
encode a model using a particular set of deformations. The method is an optimi-
sation to find the set of deformations requiring the least amount of information
to encode. The output is a reference mean image and a set of deformations which
map the mean image to each example image.

We applied the MDL-GIR method to the signed distance images derived
from the segmented surfaces for each part independently. Initial registration is
achieved by aligning the centre of gravity and scale. The MDL-GIR then pro-
ceeds with low parameter deformations (initially rigid rotations and translations)
and then increasingly local deformations. The output reference mean image is,
like the input images, a signed distance image and can be straight forwardly



segmented at the zero valued iso-surface. The mean surface is then propagated
by the appropriate deformation field into the frame of each example. For each
example the propagated surface lies close to the segmented surface and is pro-
jected onto it to generate correspondence points which are guaranteed to lie on
the segmented surface.

In addition we generated some approximate correspondences for the left and
right orbits by applying MDL-GIR to the CT images, segmenting the orbit in
the mean image and propagating the mean orbit into the frame of each example.
The orbit model allows for robust localisation for the optic nerve models.

The number of correspondence points output from this process varies from
64418 for the mandible to 1200 for each optic nerve. The mean model correspon-
dences are shown in Figure 1.

Fig. 1. Surface rendering of the mean model surfaces for the mandible, parotid and
submandibular glands, brainstem, optic nerves and the optic chiasm.

2.3 Active appearance models

An appearance model is a statistical model of the shape of a structure and associ-
ated imaging information in and around the structure. It is useful to process the
imaging information further to obtain feature response images such as gradients,
corners and other points of interest [8]. We refer to all such imaging information
and their derivatives as texture.

An appearance model has a set of parameters which control both the shape
and the texture, and are generative i.e. a specific parameterisation can generate
a realistic looking example of the shape and texture.

An AAM can match its appearance model to an image from a rough initial
estimate, by optimising the model parameters to generate an example which
matches the image as closely as possible (using the least squares sum of resid-
uals). This can be made efficient by pre-computing the Jacobian describing the



average change in residuals with respect to changes in model parameters on a
training set.

AAMs require an initial estimate of the model parameters including position,
rotation and scale. We initialise multiple AAMs in a grid of starting points
across the image. The grid of starting points are typically 20mm apart in all
directions. This is done at a low image and model resolution with a small number
of measured residuals to make it reasonably fast. The results of these searches
are ranked according to the sum of squares of the residual, and a proportion
(typically 75%) removed from consideration. The remaining search results are
used to initialise models at a higher resolution, and so on. Finally, the single
best result at the highest resolution gives the segmentation result.

Searching the entire image for everything independently is clearly inefficient.
Therefore some structures are searched for in a geometric region which is defined
relative to a previously searched structure. For example we initially search for
the mandible and calculate its bounding box. We then predict a region to search
for each of the other structures based on information learnt during the training
phase. The predicted bounding boxes are very approximate and contain a large
margin for error, but help make the process more efficient.

2.4 Segmentation pipeline

In summary, the segmentation proceeds according to the following pipeline:

– For each image:
• Run N (typically O(100) AAMs of the mandible from a grid of starting
positions across the image at low resolution.
∗ Run the 25% best results at increased resolution
∗ Repeat until at highest resolution

• Choose best result
• Initialise and run separate AAMs of left and right parotid glands, left

and right submanidbular glands, using a search region relative to the
mandible

• Initialise and run separate AAMs of left and right orbit using a search
region relative to the mandible, followed by AAMs of the optic nerves
and optic chiasm

The pipeline takes approximately 30 minutes per image, most of which is taken
up localising our reference structures, the mandible and the orbits. This stage
could be substantially sped up by using standard imaging processing steps.

3 Results and Discussion

Table 1 shows the results of the cross validation on the training datasets, together
with average results from recent papers in the literature, and the results for
the off-site and on-site test data as reported by the organisers. The values for
the literature are gathered from [2], [5], [7], [12] and [13]. Broadly speaking



our cross validation results compare well against the literature, being better or
substantially better for every part, although we note that the results from the
literature are indicative only - any more detailed comparison is not warranted
here, as datasets can vary in size, consistency and difficulty, which is of course
part of the motivation for the Grand Challenge.

The off-site test data presented similar characteristics to the training data.
Since no segmentations were available to us, we only performed a visual check
and considered that the results were comparable to the cross validation results.
At this visual review two cases stood out as presenting particular problems,
case 0522c0555 which presented with a variety of small structures, which we
presume to be metastases. The automated segmentation performed well in this
case, and was not misled by the multiple additional structures around the salivary
glands. Case 0522c0746 which presented with a large inclusion inside or close to
the parotid gland. In this case the automated segmentation identified the most
likely shape for the parotid, and took no account of the inclusion. It is not clear
what an automated segmentation should do in this situation, though we think
that post-processing of the texture in the segmented structure should be able to
robustly identify the inclusion/tumour.

Based on visual review, the automatic segmentation did not appear to be
negatively affected by the amount of amalgam used to fill the teeth of some of
the individual cases, which causes significant CT image artefacts in some cases.

The numerical results (DICE and 95th percentile Hausdorff distance) for the
off-site and on-site test data as reported to us by the organisers are presented in
Tables 1 and 2. The results are commensurate with each other and the cross val-
idation results except for the optic nerve which scored a significantly lower value
for the off-site test. This requires explanation. Estimating surfaces from thin slice
based optic nerve segmentations gave a non-anatomic looking ”stepped” struc-
ture. Prior to model building, we edited the input surfaces derived from the
provided segmentation to make them look more locally anatomic. Unfortunately
this effectively modelled a slightly different anatomical region which biased the
model and degraded the numerical results against the original segmentations.
For the on-site test data we reinstated a model built from the original surfaces.

The organisers also provided the rankings of the methods based on DICE
and Hausdorff distance, and our method was the overall winner of the challenge,
performing best on 5 out the 6 structures for both off-site and on-site test data1,
and second best on the sixth (the optic chiasm).

4 Conclusions

In this paper we have presented a fully automatic AAM based segmentation
pipeline to segment the mandible, parotid and submandibular glands, brain-
stem, optic nerves and optic chiasm from CT images, built and cross validated
on a public dataset. The system won the MICCAI 2015 Head and Neck Auto

1 2 teams submitted results after the on-site challenge workshop which affected some
of the rankings



Table 1. Average DICE scores (standard deviation) for cross validation together with
the off-site and on-site test data as reported by the organisers, and average values from
the literature.

BrainStem Chiasm Mandible OpticNerve Parotid Submandibular

Cross validation 0.88 (0.03) 0.44 (0.21) 0.91 (0.02) 0.80 (0.05) 0.82 (0.10) 0.79 (0.05)

Off site 0.87 (0.04) 0.35 (0.16) 0.93 (0.01) 0.63 (0.05) 0.84 (0.07) 0.78 (0.08)

On site 0.89 (0.03) 0.45 (0.29) 0.92 (0.01) 0.78 (0.03) 0.84 (0.03) 0.78 (0.09)

Literature 0.81 (0.07) 0.37 (-) 0.90 (0.05) 0.71 (-) 0.76 (0.09) 0.71 (0.02)

Table 2. Average 95th percentile Hausdorff distance (standard deviation).

BrainStem Chiasm Mandible OpticNerve Parotid Submandibular

Off site 4.02 (2.02) 3.24 (0.42) 1.67 (0.62) 2.80 (0.59) 5.03 (2.43) 4.83 (1.84)

On site 3.36 (1.54) 3.95 (2.13) 2.59 (0.54) 1.83 (0.44) 6.84 (2.98) 5.08 (2.23)

Segmentation Grand Challenge. It is very encouraging that such models can be
quickly built and validated on, what is for us, a completely new type of data and
achieve results commensurate with the literature. A fully automated segmenta-
tion using this pipeline seems practical, though should probably be augmented
with further post-segmentation processing to explicitly identify large tumours.
The system appears robust to many of the metastases and inclusions found in
patients in need of radiation therapy, and is not affected by the image artefacts
caused by metal within the teeth.
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