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Abstract. We describe a segmentation method that was used in the
Head and Neck Auto Segmentation Challenge held at the MICCAI 2015
conference. The algorithm consists of two building blocks. First, we em-
ploy a multi-atlas segmentation to obtain an initial segmentation for
the considered organs at risk. Secondly, we use an Active Shape Model
(ASM) segmentation to refine the initial segmentation of some of the
organs. Leave-one-out experiments with the training data were used to
determine suitable parameters for the individual steps of the segmen-
tation. The ASM refinement resulted in improved segmentation for the
optic nerves and submandibular glands, while for the brain stem, parotid
glands, chiasm, and mandibular bone, the multi-atlas segmentation was
preferable. Our submission achieved the second rank in the challenge.

1 Introduction

The aim of the Head and Neck Auto Segmentation Challenge held in conjunction
with MICCAT 2015 was to evaluate fully automatic segmentation algorithms for
the segmentation of organs at risk for radiotherapy planning of head and neck
cancer. The challenge consisted of an “offline” part with 10 cases to be segmented
before the challenge, and an “online” part with 5 cases to be segmented on the
day of the challenge. In addition to these 15 test cases, 25 training cases with
“ground truth” segmentations for the considered organs at risk were supplied by
the organizers.

Our proposed algorithm uses a multi-atlas segmentation followed by an Ac-
tive Shape Model (ASM) fitting [3] to refine the segmentation for individual
organs. Figure 1 shows a schematic overview of the approach. We used the 25
test cases as atlases for the multi-atlas segmentation and as training data for
the ASM models. No additional training data was used. We used leave-one-out
experiments on the training cases to determine suitable values for the free pa-
rameters in the multi-atlas segmentation and the Active Shape Models. These
experiments showed that for some of the structures, the multi-atlas segmentation
result could be improved by the ASM refinement (optic nerves and submandibu-
lar glands), while for others there was no significant improvement. In these cases
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Fig. 1. Overview of the method: The atlas (training) cases are used for Active Shape
Model (ASM) building and multi-atlas segmentation. For some organs, the multi-atlas
result is used to initialize the ASM fitting (red), for others, it is used as the final
segmentation result (green).

it was therefore preferable to use the multi-atlas results as the final segmentation
(brain stem, parotid glands, chiasm, and mandibular bone).

2 Method

2.1 Multi-Atlas Segmentation (MAS)

Multi-atlas segmentation is based on non-rigidly registering a number of atlas
images onto the input image, propagating the atlas segmentations to the target
image, and then fusing them into a single segmentation with a fusion algorithm.
The atlas cases are chosen from the training examples provided for the challenge.
The MAS work flow is implemented using individual algorithms for registration
and fusion. These were chosen due to their performance in our leave-one-out
evaluations as well as their availability as an in-house solution or an open source
algorithm. We present the details in the following.

Rigid Registration For the initial rigid registration of the atlases to the target
image, we used Varian’s in-house automatic rigid alignment algorithm. It is based
on detecting a small number of obvious landmark points and then computing
the unique rigid transform that minimizes the distance between these points.

Non-Rigid Registration After rigid alignment, the atlas images are registered
non-rigidly onto the target image. Based on its performance in a number of re-
cent public studies and internal tests, we selected the DEEDS algorithm [4] for
computing the deformable registration. Its core strengths are a robust image
similarity metric comparing self-similarity context (SSC) features and an effi-
cient global optimization using a Markov random field defined on a minimum
spanning tree. It is also comparatively efficient, with one registration requiring
approximately 1-5 minutes of computation time.
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Fig. 2. Optimizing majority-vote segmentation fusion by adjusting the bias parameter
w in Eq. (1).

Multi-Atlas Fusion Once the atlas images are registered, the atlas segmentations
can be propagated to the target image with the deformation fields computed
by the DEEDS algorithm. This results in multiple segmentation candidates per
organ, which we fuse individually (one fusion per organ) using weighted majority
voting. For N binary segmentation images s,(x), the fused result for weight
w € [0,1] is given as:
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1, otherwise.

A weight w = 0.5 results in a fair majority vote. For w > 0.5 we introduce
a bias resulting in more pixels classified as foreground. This can improve the
segmentation quality, for example, for very thin structures such as the optic
system that frequently have a local thickness of a single slice.

Group-wise Atlas Pre-Selection For the offline challenge, we used all N=25 train-
ing cases as atlas images. For the online challenge, this was not possible due to
run-time constraints. We therefore selected a subset of the training images as
atlases using a greedy group-wise scoring. We start by selecting the two atlases
which perform best as single atlases, measured by the dice coefficient, in a leave-
one-out study. Then, we provisionally add each of the remaining candidates as
a third atlas, and compare the resulting N — 2 different atlas sets in terms of
multi-atlas segmentation quality on the remaining N — 3 training images, finally
choosing the one that results in the best MAS results. The same is repeated to
choose the fourth atlas and so on. The resulting atlas set has the potential to
cover a wide range of anatomical variability, while avoiding unsuitable atlases,
e.g. due to image artifacts or abnormal anatomy.

2.2 Active Shape Model Fitting

The registrations and the MASs are used to initialize an Active Shape Model
(ASM) fitting [3].
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Fig.3. Group-wise atlas selection on the training set as described in Sec. 2.1. Seg-
mentation accuracy saturates at about seven atlases

ASM Computation We built a separate Active Shape Model for each organ, using
only the 25 training cases provided for the challenge. For initial rigid alignment
of the training data, we manually placed 4 landmarks on each of the organs.
Because of the limited number of training datasets, the statistical shape model
is likely to not fully capture the anatomical variability of the organs. Therefore,
we slightly enlarge the shape variability by augmenting the model with smooth,
low-frequency deformations, as described in [5]. In order to model the image
intensities in the neighborhood of the shape model, we employ intensity profiles
along the surface normal, as described in the original ASM publication [3].

ASM Initialization In order to fit the shape model to the target image it first
needs to be aligned to this image with a rigid transformation. In principle, this
can be done for all organs at once, using a single global transformation. However,
our experiments have shown that this global transformation can result in poor
alignment for some of the organs. Instead, we propose to align each organ in-
dividually. This can be achieved by transforming the known landmarks of each
atlas organ into the target image using the non-rigid registrations computed
during the MAS. This results in several hypotheses for each landmark (one per
atlas case and registration), that are fused using their component-wise median
and then used to compute an optimal rigid transformation. Furthermore, to con-
strain the model to remain roughly in the area of the initialization, we compute a
posterior shape model using the propagated landmarks [1]. Finally, we compute
an initial guess for the model parameters by fitting the model’s shape to the
surface that resulted from the MAS.

ASM Fitting Starting from this initial shape, the original ASM fitting algorithm
described by Cootes and Taylor in [3] is used to fit the ASM to the CT image.
This algorithm aims at placing the boundary points of the shape model at image
points that have similar intensity profiles. The result is a shape model instance
whose boundary is expected to coincide with the organ boundary.



Initializations Global rigid Local rigid Local rigid and MAS

brainstem 0.61 0.86 0.84
optic chiasm 0.00 0.51 0.51
optic nerves 0.00 0.56 0.59
parotid glands 0.30 0.74 0.78
submand. glands 0.16 0.65 0.67

Table 1. Median dice coefficients for different initialization methods for the ASM.

Multi Atlas ASM
Organ Dice Hausdorff Average Dice Hausdorff Average
brainstem 0.84 6.3 1.7 0.85 6.7 1.8
optic chiasm 0.51 4.9 1.2 0.43 4.6 1.3
parotids 0.79 13.2 2.2 0.80 14.3 24
optic nerves 0.59 3.7 0.9 0.64 3.8 0.8
submand. 0.67 10.5 24 0.71 10.7 2.2

Table 2. Median metrics for initial segmentation and after ASM fitting (best values
for each organ in bold face). For our challenge submissions, the organs in the lower
half were segmented with the ASM, while for the organs in the upper half we directly
submitted the multi-atlas segmentation.

3 Results

We evaluated all parameters using a leave-one-out strategy on the 25 training
cases. L.e., the multi-atlas segmentations were computed using up to 24 segmen-
tation hypotheses per organ, and ASMs were built from the same cases.

Registration and Multi-Atlas Fusion First, parameters for DEEDS non-rigid reg-
istration [4] where tuned based on segmentation overlap of propagated and tar-
get segmentations. For the offline challenge (10 test cases delivered before the
challenge), we used an image pyramid with 7 levels with downsampling factors
7,6,5,4,3,2,2; 5,4,3,2,2,2,2 registration label samples per cardinal direction, and
3,2,1,1,1,1,1 voxels spacing between samples. The regularization parameter «
was empirically set to 1.2. The resulting run time was about 5 minutes. For
the online challenge, this had to be improved in order to be able to segment all
test cases in under 2 hours. We therefore changed the image pyramid to 3 levels
with downsampling factors 8,4,2; the samples to 6,4,2 and the spacing to 3,2,1.
Furthermore, we selected a subset of 7 atlases based on their joint performance
on segmenting the remaining atlases as described in Section 2.1. The resulting
segmentation quality using different atlases can be seen in Figure 3.

For the segmentation fusion, we found best results by setting w to 0.66 in
Equation (1), classifying a pixel as foreground if more than 34% of the target
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Fig. 4. Examples of ASM fitting, ground truth shown in green, MAS in orange, ASM
in red. For case 0057 (middle), the ASM improves the MAS result, for case 0147 (right)
the ASM fit is worse than the MAS. The dice coefficients and average surface distances
are depicted on the left, showing how successive iterations improve or degrade the
result for these two cases.

segmentations classify it as foreground. For very ‘thin’ structures such as the
optic nerves, with an extent of only one voxel in some directions, an even stronger
bias (w = 0.8) further improved the segmentation, see Figure 2.

ASM Computation, Initialization and Fitting Our experiments led us to employ
a relatively large number of profiles (up to 2600) even for small structures. Each
profile consists of 7 points, spaced evenly with a distance of 1 mm. We apply
Gaussian smoothing (¢ = 1mm) to all input images. Experiments with multi-
resolution ASMs showed no improvement in fitting accuracy.

We evaluated the different initialization methods described in Section 2.2, see
Table 1. It can be observed that the global rigid transform computed from the
provided set of landmarks fails to align the models properly. Using the propa-
gated landmarks to estimate a “local” rigid transform for each organ individually
substantially improves the initial results. Further fitting the model parameters
to the multi-atlas segmentation (MAS) results in a slightly better initialization.
Due to the relatively good initialization, the number of iterations needed in the
final ASM fitting is small, and was empirically determined to lie between 5 and
10, depending on the organ. For some of the cases, we observed a degradation
of the fitting result with increasing numbers of iterations (see Figure 4). Likely
causes for such degradations are poorly generalizing models due to the small
number of training cases or misleading intensity information. However, the ef-
fect of potential degradation is limited by the low number of fitting iterations.



Table 3. Challenge results

Brain- Chiasm  Mandib. Optic Nerves Parotids Submand.

Case  Stem Left Right Left Right Left Right

0555 0.73 0.48 0.92 0.65 0.74 0.83 0.83 0.59 0.51

0576 0.87 0.49 0.72 0.70 0.74 0.76 0.84 0.57 0.68

0598 0.84 0.79 0.92 0.65 0.76 0.87 0.88 0.69 0.58

0659 0.84 0.68 0.93 0.53 0.71 0.80 0.77 0.72 0.72

° 0661 0.89 0.65 0.90 0.53 0.63 0.88 0.80 0.79 0.82

5 0667 0.76 0.59 0.89 0.69 0.59 0.85 0.89 0.75 0.78

0669 0.90 0.64 0.92 0.71 0.65 0.83 0.83 0.66 0.77

0708 0.88 0.64 0.90 0.45 0.68 0.88 0.86 0.73 0.80

0727 0.85 0.50 0.91 0.61 0.74 0.84 0.82 0.80 0.82

0746 0.88 0.28 0.78 0.41 0.51 0.82 0.61 0.77 0.80

§ Avg. 0.84 0.57 0.88 0.59 0.67 0.84 0.81 0.71 0.73

n

Hé 0555 7.83 3.00 2.00 2.39 1.69 3.92 5.16 7.80 9.36

0576 3.97 3.21 5.61 2.50 2.35 6.58 4.45 6.96 5.74

. 0598 4.75 2.00 1.41 3.25 3.00 4.24 3.50 6.07 8.59

< 0659 4.27 1.84 2.01 3.85 1.84 4.97 5.62 4.80 5.04

@ 0661 3.05 2.48 2.48 3.97 3.27  3.46 5.12 3.87 2.97

g 0667 10.01 2.37 2.37  2.62 2.62 6.92 2.84 6.61 4.01

E 0669 2.50 1.81 2.35 2.36 2.62 5.09 5.60 6.20 3.76

g 0708 3.24 2.00 247 4.24 2.50 291 3.76  5.03 3.65

0727 4.60 3.16 2.67 3.40 2.08 5.63 8.25 3.76 3.54

0746 3.10 4.42 5.76  5.97 3.60 5.44 12.28 4.43 4.98

Avg. 4.73 2.63 2.91 3.45 2.56  4.92 5.66 5.55 5.17
Rank 3 1 4

0788 0.89 0.54 0.90 0.70 0.67 0.81 0.80 0.76 0.80

0806 0.85 0.44 0.91 0.56 0.56 0.76 0.76 0.76 0.78

S 0845 0.85 0.47 0.87 0.66 0.55 0.83 0.81 0.68 0.79

A 0857 0.85 0.58 0.88 0.75 0.55 0.83 0.80 0.76 0.64

0878 0.86 0.58 0.87 0.47 0.50 0.82 0.77 0.82 0.55

;g Avg. 0.86 0.52 0.89 0.63 0.57 0.81 0.79 0.76 0.71

n

8 = 0788 3.15 3.26 2.67 3.00 4.79 5.89 6.81 4.86 5.10

g 0806 4.44 3.96 2.37 3.16 4.60 5.87 7.76  5.12 3.79

T 0845 5.00 2.42 2.50 2.52 4.02  4.90 5.64 5.71 4.18

% 0857 4.69 2.34 3.00 2.08 4.79 6.97 6.63 6.55 6.73

7 0878 4.22 3.48 2.81 3.21 4.28 3.89 8.52 3.81 9.92

- Avg. 4.30 3.09 2.67 2.79 4.49 5.50 7.07 5.21 5.94
Rank 2 1 4




Challenge Results Table 2 shows the final median segmentation quality we
could achieve on the training data with the MAS and the ASM fitting. The best
values are displayed in bold. Based on these, we chose to employ the ASM for
the optic nerves and submandibular glands and use the multi atlas result for
the remaining structures. For the mandible, experiments showed that the MAS
substantially outperformed the ASM.

Our submission fared well in the competition, see Tab. 3, achieving second
rank for both the offline and on-site challenge. Interestingly, our results did not
vary substantially between the offline and online competition, indicating that
using the seven preselected atlases and the sped-up registration parameterisation
did not substantially deteriorate the results.

4 Conclusion

We submitted a combination of a state-of-the-art multi atlas segmentation (MAS)
and ASM fitting to the head-neck segmentation challenge, and achieved good re-
sults with an average second rank. For the ASM segmentations, a big impact
of accurate initialization using the propagated landmarks from the registered
atlases could be observed. For the MAS, it is notable that competitive perfor-
mance could be achieved by using a group-wise preselection of atlases and a
fast registration method that resulted in a MAS runtime of about 7 minutes per
test case. Further improvements could potentially be achieved (at the cost of
execution speed) by employing more advanced segmentation fusion algorithms
like such as STEPS [2].
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