A new implementation of
itk::ImageTolmagekFilter for efficient
parallelization of image processing algorithms
using Intel® Threading Building Blocks

Release 0.00
Amir Jaberzadeh!, Benoit Scherrer!, Simon K. Warfield, Ph.D. !

July 21, 2016

!Computational Radiology Lab (CRL), Boston Children’s Hospital, Harvard Medical School, 300
Longwood Ave, Boston MA 02115

Abstract

Modern medical imaging makes use of high performance computing to accelerate image acquisition,
image reconstruction, image visualization and image analysis. Software libraries that provide imple-
mentations of key medical imaging algorithms need to efficiently exploit modern CPU architectures. In
particular, workstations with small numbers of cores are being replaced by very high core count archi-
tectures, and by many integrated core architectures, which offer acceleration by vectorization and multi-
threading. The Insight Toolkit (ITK) is the premier open source implementation of medical imaging
algorithms, with a generic design for image processing filters that allows for many developers to rapidly
incorporate these algorithms in to new applications. While ITK filters benefit from a generic, platform
independent multithreading capability, the current implementation is difficult to exploit to achieve very
high performance. Specifically, ITK relies on a static decomposition of the image into subsets of equal
size which can be highly inefficient. Threads that terminate early due to uneven work throughout the
image finish early and do not contribute further to the processing of more complex regions, leading to
idle computational resources and longer execution times. Performance is also difficult to coordinate
across multiple algorithms, as the ITK filter assumes each filter operates independently but the global
implementation has an impact across filters. In this work, we propose a novel, simple to use, high per-
formance multithreading capability for ITK that accelerates the itk::ImageTolmageFilter. We utilise a
workpile data decomposition strategy, and leave the task of optimal job scheduling on CPU cores to the
Intel®library called Threading Building Blocks (TBB). We demonstrate the efficacy of multi-threading
with TBB in comparison to the itk::Multithreader class, through three simple example image analysis
algorithms. Our implementation provides a new multi-threaded itk::ImageToImageFilter that can be
conveniently reused to provide simple and efficient multi-threaded code across applications and algo-
rithm libraries. Our new implementation is distributed as open-source software to the community and is
straightforward to adopt.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

Contents 2

Contents
1 Introduction 2
2 ITK Implementation 4
2.1 The original static decomposition multithreading capability of ITK filters 4
2.2 Ournew TBB implementation 4
3 Application and evaluation 8
3.1 Background e 8
3.2 Testedalgorithms 9
4 Results 10
4.1 Accelerationover ITK 10
4.2 Filteroutputs e e 11
5 Conclusion 11
6 Practical notes 12

1 Introduction

As medical imaging technology evolves, researchers and clinicians have access to higher resolution images.
Moreover, reseachers are developing novel, more complex algorithms to reconstruct and automatically an-
alyze those images. As a result, the computational burden of medical image analysis has substantially in-
creased in the last decade. While in the 2000’s, processor vendors have focused on increasing the processor
frequency to accelerate computation, this approach became limited due to power efficiency and reliability
issues at high frequencies. The new focus is now on increasing processor performance by developing multi-
core architectures, in which multiple processing units (i.e., cores) are placed on a single die together with
low-level cache memory and high performance buses for shared-memory inter-core communication.

Image processing algorithms can take advantage of multi-core architectures by running computations on
multiple cores at the same time. In a number of image analysis algorithms, the series of operations required
to create one output pixel are often independent from other output pixels. These algorithms represent the
perfect scenario for efficient parallelism since the same series of operations may be executed at every pixel
of the image simultaneously without any data race and without requiring data synchronization. A naive
implementation may be to create one thread for each pixel and rely on the operating system (OS) scheduler
to synchronize the execution of threads onto cores. This solution, however, leads to catastrophic overhead
because of the cost of context switching when switching between threads, which ruins both the cache and
the instruction pipelining implemented in modern processors. Moreover, the number of threads is generally
limited by the OS.

A classic solution, instead, is to decompose the image into subdomains and concurrently process each sub-
domains using a limited number of threads, the number of which being generally chosen equal to the number
of processor cores to minimize overhead.

An object-oriented programming model that follows this strategy is implemented in ITK. The available high-

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

level programming interface for multithreaded filters in ITK enables developers to easily implement shared-
memory algorithms for image processing in a platform-independent manner. The ITK implementation,
however, relies on a static decomposition of the image into subdomains of equal size, and on the static
instantiation of one thread for each subdomain. First, the ITK implementation creates a new set of threads
at each filter execution, which leads to unnecessary overhead. More importantly, the static decomposition
strategy used in ITK is highly inefficient when the computational complexity varies between subdomains. It
commonly leads to threads that terminate early and hibernate while the values at other voxels remain to be
computed, leading to a waste of computational resources and longer computational times.

A more efficient strategy is dynamic image decomposition, which aims at dynamically distributing the pro-
cessing load of image analysis among all available threads. It is typically implemented by considering a set
of smaller-scale tasks to complete (e.g., each slice of an image to compute) and a pool of threads that concur-
rently “consume” and complete the next available task. When the granularity of each task is well calibrated,
this strategy leads to minimal overhead and enables continuous and even distribution of the workload on
the processing resources. Determining the optimal granularity for each task, however, is not trivial - it is
problem dependent and, moreover, may evolve same problem.

The Intel® Threading Building Blocks (TBB) library provides a direct, high-level, open-source, platform-
independent solution to this problem for shared-memory systems. Specifically, TBB provides a high level
abstraction of the concept of thread; it enables the developer to expose parallelism and share opportunities for
parallelism by defining tasks, without explicitly encoding the mapping of tasks onto actual threads. Instead,
the mapping of each task onto threads is performed automatically by TBB’s scheduler, taking into account
the system workload and automatically adjusting the processing granularity of each thread by achieving
a real-time, light-weight profiling of each task. This abstraction enables the developer to focus on the
implementation of each task instead of manually implementing the complex machinery to execute the tasks.
The TBB scheduler has been shown to cause limited overhead, leading to more efficient parallelization on
average and, in addition, ensuring improved scaling on future hardware.

In this work, we propose a new, generic ITK class named itk::TBBImageToImageFilter that achieves
efficient dynamic image decomposition for parallel image algorithms using Intel® TBB. Importantly,
our new class is mostly compatible with the original ITK multithreading capability implemented in
itk::ImageToImageFilter, making it straightforward to adopt for the community. In aggregate, any
existing ITK filter can take advantage of our multithreading advances by changing the parent class to TB-
BImageTolmageFilter and renaming ThreadedGenerateData() method.

The paper is organized as follows. First, we describe in Section 2 the implementation of our new
itk::TBBImageToImageFilter class. Second, we describe in Section 3 two test applications especially
suited to parallelism in the context of diffusion-weighted imaging processing, and evaluate the efficacy of
our implementation compared to the built-in ITK multithreading mechanism. Finally, we conclude in Sec-
tion 6 how the ITK community can straightforwardly take advantage of our novel efficient multithreading
capability.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

2 ITK Implementation

2.1 The original static decomposition multithreading capability of ITK filters

ITK is based on a generic representation of data objects and process objects, and on a generic way to connect
them together to build processing pipelines for image processing. Processing objects, which are also referred
to as ITK filters, typically operate on data objects to produce new data objects. Specifically, the base class
for all image algorithms producing a new image as output is itk::ImageToImageFilter. More than 185
algorithms inherits from this class in ITK 4.8.

The traditional, object-oriented way to implement a multithreaded image algorithm in ITK is to 1) imple-
ment a new class that inherits itk::ImageToImageFilter; and 2) overload the following virtual protected
methods:

void BeforeThreadedGenerateData ()

void ThreadedGenerateData (const OutputIlmageRegionType &outputRegionForThread ,
ThreadldType threadld)

void AfterThreadedGenerateData ()

ThreadedGenerateData is the function called concurrently in each thread that contains the code to be
executed in parallel, with outputRegionForThread describing the portion of the output data the current
thread is responsible for generating. ThreadedGenerateData also requires a threadId dedicated to the
output data region in which thread is executing and threadId can be used before or after the parallel part
referring a specific region.

BeforeThreadedGenerateData and AfterThreadedGenerateData are single-threaded methods typically
used to prepare (e.g., allocate memory, pre-compute some values, etc.) or finalize (e.g., free memory, post-
compute some values over the entire image, etc.) the filter before and after the multithreaded processing,
respectively.

The actual multithreading capability of ITK filters (and execution of the methods mentioned above) is im-
plemented in itk::ImageSource: :GenerateData () which is responsible for:

e Allocating the output data,
e Calling BeforeThreadedGenerateData (),
e Performing the static image decomposition,

e Creating and spawning the threads, each running the virtual method ThreadedGenerateData () on
one statically defined region,

e and Calling AfterThreadedGenerateData ().

2.2 Our new TBB implementation

We propose a new class named itk::TBBImageToImageFilter that achieves efficient dynamic task de-
composition using Intel® TBB while being mostly compatible with the original ITK multithreading pro-
gramming model described above.

Our new class itk::TBBImageToImageFilter inherits from itk::ImageToImageFilter so that
all default behaviors for several important aspects (e.g., allocation of the output image) are

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

2
4
6
8
10

2.2 Our new TBB implementation 5

compatible with the original multithreaded ITK filters. Our main contribution is a new
implementation of itk::TBBImageTolImageFilter::GenerateData() that overrides the original
itk::ImageSource::GenerateData () to achieve dynamic task decomposition using TBB instead of the
static decomposition of ITK.

Using TBB requires to conceptualize what is the smallest possible task for the application. In this work we
considered it to be the computation of the values for one slice of the output image but it is possible to use a
line of data or a single voxel as the smallest possible task.

We used the high level parallel_ for template function of TBB to achieve parallel iterations over all the
slices of the image. The syntax for parallel_for is as the following:

parallel _for (blocked _range<int >(start , end, increment), Functor);

where blocked_range<int> (start, end, increment) defines the range of values for the ’parallel for’
loop and Functor is a C++ class that defines the evaluation operator () that will be called concurrently by
each thread. Below is an example of functor that can be used with parallel _for in TBB:

class MyFunctor {
public:
void operator () (const blocked_range<int>& r) const;

s

Specifically, the code inside operator () is automatically called by TBB’s scheduler with the parameter r
describing a collection of tasks identified by a subrange of the for-loop range.

Dynamic decomposition of the image was achieved by using parallel_for that ranges from O to the
number of slices Ng. We implemented a TBB functor that converts a given set of slices (identified by
their indexes in [0,Ns]) to a itk::ImageRegion. Then this region is passed to a virtual method called
TBBGenerateData () where parallel portion of filter computations are implemented. It is important to note
that in this API implementation ThreadedGenerateData () is replaced by TBBGenerateData () which
eliminates the need for passing threadId as an argument. In contrast to ITK threading strategy, TBBIm-
ageTolmageFilter spawns more regions on image space and TBB scheduler dynamically decides the best
chunk size at runtime. So the number of times that TBBGenerateData () is called inside parallel_for
is unknown beforehand. On the other hand, depending on the choice of smallest possible task, TBB can
generate a workpile with large number of tasks that makes tracking of all those tasks difficult and not ef-
ficient. To highlight this difference and avoid further ambiguities, usage of ThreadedGenerateData ()
is deprecated and all derived classes should override TBBGenerateData (). Existing filters inherited
from itk::ImageToImageFilter, can benefit from this APl by renaming ThreadedGenerateData () to
TBBGenerateData (). The most important part of our implementation is included below:

namespace itk {

template< typename TInputlmage , typename TOutputlmage >
class TBBFunctor
{
public:
typedef TBBFunctor Self;
typedef TOutputlmage OutputIlmageType;
typedef typename OutputlmageType:: ConstPointer OutputIlmageConstPointer;

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76

2.2 Our new TBB implementation

typedef typename TOutputlmage :: SizeType OutputlmageSizeType;
typedef typename OutputlmageType:: RegionType OutputlmageRegionType;

itkStaticConstMacro (InputlmageDimension, unsigned int,
TInputlmage :: ImageDimension);

itkStaticConstMacro (OutputlmageDimension, unsigned int,
TOutputImage :: ImageDimension);

typedef TBBImageTolmageFilter<TInputlmage , TOutputIlmage>
TbbImageFilterType ;

TBBFunctor (TbbImageFilterType xtbbFilter , const OutputlmageSizeType&
outputSize): m_TbbFilter (tbbFilter), m_OutputSize (outputSize) {}

void operator () (const tbb::blocked_range<int>& r) const

{
// Setup the size of the jobs to be done
typename TOutputlmage :: SizeType size = m_OutputSize;
size [OutputlmageDimension — 1] = r.end() — r.begin();
// Setup the starting index
typename TOutputlmage :: IndexType index;
index . Fill (0);
index [OutputImageDimension — 1] = r.begin ();
// Construct an itk ::ImageRegion
OutputlmageRegionType myRegion(index , size);
// Run the ThreadedGenerateData method!
m_TbbFilter —>TBBGenerateData (myRegion);
}
private:
TbbImageFilterType sm_TbbFilter;
OutputlmageSizeType m_OutputSize;
o

// Constructor
template< typename TInputlmage , typename TOutputlmage >
TBBImageTolmageFilter< TInputlmage, TOutputlmage >::TBBImageTolmageFilter ()
{

// By default, do not define the number of threads.

// Let TBB doing that.

this —>SetNumberOfThreads (0);

m_NumberOfThreads = false;

}

// Destructor
template< typename TInputlmage , typename TOutputlmage >
TBBImageTolmageFilter< TInputlmage, TOutputlmage >::"TBBImageTolmageFilter ()

{1}

template< typename TInputlmage , typename TOutputlmage >
void TBBImageTolmageFilter< TInputlmage, TOutputlmage >::GenerateData ()
{
// Get the size of the requested region
typename TOutputlmage :: ConstPointer output =
static_cast <TOutputlmage *>(this—>ProcessObject:: GetOutput(0));
typename TOutputlmage :: SizeType outputSize =
output—>GetRequestedRegion (). GetSize ();
this —>m_NumberOfJobs = outputSize [OutputlmageDimension — 1];

// Call a method that can be overriden by a subclass to allocate
// memory for the filter’s outputs

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

78
80
82
84
86
88
90
92
94
96
98

100

102

104

106

108

110

112

114

116

118

120

2.2 Our new TBB implementation 7

this—>AllocateOutputs ();

// Call a method that can be overridden by a subclass to perform
// some calculations prior to splitting the main computations into
/] separate threads

this —>BeforeThreadedGenerateData ();

// Set up the number of threads. Only for testing purposes. Should
// not be used in practice.
tbb :: task_scheduler_init init(—2);
if (m_NumberOfThreads)
init.initialize (this —>GetNumberOfThreads ());
else
init.initialize ();

// Do the task decomposition using parallel_for
tbb:: parallel _for(tbb::blocked_range<int >(0, this—>m_NumberOfJobs,1)
, TBBFunctor<TInputIlmage , TOutputlmage >(this , outputSize));

// Call a method that can be overridden by a subclass to perform
/] some calculations after all the threads have completed
this —>AfterThreadedGenerateData ();
}
// This method replaces ThreadedGenerateData () and should be overridden by a subclass
// to perform parallel computations. This method is called iteratively inside parallel_for
template< typename TInputlmage , typename TOutputlmage >
void TBBImageTolmageFilter< TInputIlmage, TOutputlmage >
:: TBBGenerateData(const OutputlmageRegionType&)

{
std :: ostringstream message;
message << “itk ::ERROR:.” << this —>GetNameOfClass ()
<< 7(” << this << 7):.” << ”Subclass._should_override_this._method!!!”;
ExceptionObject e_(__FILE__, __LINE__, message.str ().c_str(),ITK_LOCATION);
throw e_;

}

// Get maximum number of jobs

template< typename TInputlmage , typename TOutputlmage >
unsigned int TBBImageTolmageFilter< TInputlmage ,
TOutputlmage >::GetNumberOfJobs() const

{
}

} //namespace itk

return m_NumberOfJobs ;

The resulting itk: :TBBImageToImageFilter is compatible with the original multithreading capability im-
plemented in ITK. Specifically, any existing filter can take advantage of our new implementation by chang-
ing the parent class shown below and renaming the ThreadedGenerateData () to TBBGenerateData ().

Using the old multithreading ITK capability:

namespace itk {
template< typename TInputlmage, typename TOutputlmage >
class itkMyITKFilter : public ImageTolmageFilter< TInputlmage, TOutputlmage>

public:
typedef ImageTolmageFilter< TInputlmage, TOutpulmage > Superclass;

Using our new generic multithreading capability:

namespace itk {
template< typename TInputlmage, typename TOutputlmage >
class itkMyITKFilter : public TBBImageTolmageFilter< TInputlmage, TOutputlmage>

public:

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

6

typedef TBBImageTolmageFilter< TInputlmage, TOutpulmage > Superclass;

3 Application and evaluation

In this Section, we describe three data-parallel algorithms in the context of diffusion-weighted image pro-
cessing. These example algorithms having different workload balance and granularity levels create an envi-
ronment to evaluate our new multithreading API in comparison to the original ITK multithreading strategy.
For comparison purposes we have included a run-time option to choose between TBB, ITK or both multi-
threading frameworks using a ”-u” flag in all commands.

3.1 Background

Diffusion-Weighted Imaging (DWI) is a MRI technique which is sensitive to orientation anisotropy of water
molecules in restricted structures. It allows us to study the geometry of human brain-like fiber tracts or can
be applied to compute clinical biomarkers usable for diagnosing diseases. Diffusion tensor estimation is the
process of fitting pre-defined diffusion models in the brain DWI images. This relationship is expressed by
the Stejskal-Tanner formula [2]

S; = Spe e e (1)

where S; is the observed signal for ith direction, Sy is the reference signal, b is a signal attenuation constant
called the ”b_value”, g; is gradient vector of ith DW image, and D is matrix of unknown tensors. Having at
least six non co-linear gradient directions and at least one reference image, one can use least squares method
to find the best model fitted into the measured data. In practice, reference signal is also prone to noise and
artefact thus adding Sy signal into the estimation parameters can lead to a better estimation of true tensors.
For this purpose matrices of g and D are reshaped as below to compute 7 unknown parameters. Hence g is
a m x 7 with m available diffusion directions and reference images.

1 —bigl, —bigl, —bigl, —2biglgl, —2bighel. —2bigigt.

1 _bmgrznx _bmgrzny _bmg%zz _meg%lxgrzny _2bmgr2nyg%1z _2bmgr2nxgr2nz
and Dis a1l x 7 vector,
D=[In(Sy) Dy Dy, D Dy Dy, D] 3)

In order to solve Eq 1 for unknown parameters D, some DTI estimation methods like linear least squares
(LLS) and weighted linear least squares (WLLS) employs a linearized form of Eq 1 by considering its log-
arithm. On the other hand nonlinear least squares (NLS) methods minimize sum of squared errors between
measured and estimated signals which are directly computed from Eq 1. In practice, due to existence of
noise or artefacts, estimators happen to find tensors with negative eigen values which has no physical re-
alization. Constraining estimators to positive semi definite solutions is proposed in many studies while a
Cholesky factorization method is used here for this purpose [4]. In total, estimation methods developed in
this package are listed as LLS, WLLS, CLLS, CWLLS, NLS, WNLS, CNLS and CWNLS which C stands
for constrained and W is the weighted version. Also it is known that, at low signal-to-noise ratio (SNR),
pixel intensity values have a Rician distribution because of the interference of noise and separation of real
and imaginary components of the acquired images [3] so this package also includes a Rician noise correction
filter.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

3.2 Tested algorithms 9

3.2 Tested algorithms

Here we describe three algorithms specific to diffusion-weighted image processing. As mentioned in
Section 2, itk::TBBImageToImageFilter is compatible with the multithreading programming model of
itk::ImageToImageFilter, which enables straightforward comparison of performance between the two
classes.

Rician noise correction filter: In order to correct for the Rician noise, this filter called RicianNoiseCor-
rectionFilter follows the correction scheme presented in [1]. In this scheme, voxel intensity is replaced with
zero if it is lower than the Rician noise standard deviation or v/A2 — 62 is substituted otherwise, where A and
o2 are voxel intensity and Rician noise variance respectively. For computation of the Rician noise variance,
this filter receives a mask of background region or a value set by user. While using multiple threads,
several instances of TBBGenerateData () iterate over their allocated image regions and generate corrected
signals for all voxels. Since this filter tests a simple condition with predictable computation size thereby
creates a balanced workload with a low granularity level. RicianNoiseCorrectionFilter recieves a NHDR
file and writes it back to a NHDR file with corrected voxel intensities for the use in next steps of this package.

RicianNoiseCorrectionFilter inputlmage.nhdr correctedlmage.nhdr -m background_mask.nrrd -v
variance -c cores -u TBB/ITK/Both

Linear tensor estimation filter: This filter estimates diffusion tensors of Eq 1 using Linear least
squares (LLS) and weighted linear least squares algorithm (WLLS) based on the study by Koay [5]. This
filter estimates b0 and diffusion tensors formulated in D matrix for each voxel as described in section 3.1.
Tensor estimations are limited to a mask region if a brain mask is provided which creates an unbalanced
workload for different threads but granularity level is still low due to simple computations required in linear
methods. TensorReconstructionFilter is capable of working with images acquired both in multi-shell or
single-shell diffusion MRI data by reading and employing corresponding b-values from the input. Both 4D
NHDR and multiple 3D NRRD file formats are accepted in this implementation. Besides main tensor image
output, other optional outputs generated in this filter are estimated: b0 image, mean squared residuals image
and ADC map computed for each voxel which requires optional command line arguments provided as below.

TensorReconstructionFilter inputlmage.nhdr -f mask.nrrd tensorlmage.nrrd ADCImage.nrrd -r mean-
Residuallmage.nrrd -b bOImage.nrrd -m method -c cores -u TBB/ITK/Both

Constrained non-linear tensor estimation filter: In order to estimate physically viable and more
accurate tensors constrained non-linear least squares solutions to Eq 1 are implemented in this filter
to minimize cost functions expressing CNLS, CWNLS, CLLS and CWLLS problems as described in
section 3.1. Unknown parameters computed using TensorReconstructionFilter are then passed to this
filter to initialize a minimization step which aims to converge to a better set of tensor parameters. In
each voxel the algorithm computes new parameters if the initial bO value is higher than a user defined
threshold and whether that voxel is located within the brain mask if provided. This example presents an
algorithm with higher granularity relative to number of iterations in the optimization process for each voxel.
This makes it harder to predict the required computations leading to a more unbalanced workload. This
filter optionally receives pre-computed tens and b0 images provided by user and if not available it calls
TensorReconstructionFilter for the initialization. In the end, it generates mean squared residuals image in
addition to output tensor image.

PSDTensorEstimationFilter inputlmage.nhdr -p initialTensor.nrrd -b bOImage.nrrd -f mask.nrrd -r nu-

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

10

mOflterarionsImage tensorImage.nrrd -0 meanResiduallmage.nrrd -m method -c cores -t thresh -u TB-
B/ITK/Both

4 Results

4.1 Acceleration over ITK

In this section acceleration performance is compared between ITK and TBB implementations of test filters
for different number of cores. For a fair comparison, each filter is executed 30 times on different machines
and the minimum time is used for comparisons as there is always some background tasks which increase
computation time. Acceleration is defined as ratio of execution time for single threaded divided by its multi-
threaded version. Time measurements are based on absolute wall clock time computed for parallel portions
of the code using tbb/tick_count.h

Acceleration scalability graphs is shown in Figs 1 - 3 for three test filters respectively. The results show the
amount of acceleration by exploiting more computational resources.

14

sl | inear

12

10

Acceleration

1 2 3 4 5 6 7 8 9 10 11 12
of cores

Figure 1: Scalability graph of acceleration in Rician noise correction filter comparing ITK vs TBB perfor-
mance. Linear acceleration is added as a reference

In Fig 1 Rician noise correction filter shows ITK and TBB have equal performance while dealing with
balanced workload and low level of granularity. Linear tensor estimation filter is computed in presence
of the brain mask and as demonstrated in Fig 2, TBB outperforms ITK by smart utilization of resources
and dynamic scheduling of tasks in presence of workload imbalance. This pattern is more pronounced in
non-linear tensor estimation, Fig 3, in which the higher burden of computations leads to a larger perfor-
mance difference between ITK and TBB. In this case a growing performance gap is visible reaching to 66%
improvement for 12 cores. In the last two filters, ITK showed several acceleration jumps in presence of
work imbalance. This is caused by the way ITK splits image space and some newly divided regions working
on the background image, with few computations, do not contribute into a higher acceleration. Modifying
number of threads changes image partitions and the jumps occurs when image space is decomposed in a

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

4.2 Filter outputs 11

more balanced state.

4.2 Filter outputs

Fig 4 illustrates available outputs for TensorReconstructionFilter including tensor, bO and ADC image. Both
tensor estimation filters generate mean squared residual images which demonstrates fitting error of DTI
model to the input data. In Fig 5 a comparison between mean squared residuals computed with LLS and
CNLS methods are presented. These residuals are normalized respective to maximum value available in
both images. As shown in Fig 5, CNLS method can provide a model with a better fit to the acquired images
due to lower mean residual values in general. This improvement is achieved in expense of computational
time, as linear estimator is computed in 0.83 seconds on a Xeon cpu with 12 cores, non-linear estimator
requires 8.15 second on a same machine.

14

wiee inear
12 <@=TBB
e | TK

Acceleration

1 2 3 4 5 6 7 8 9 10 11 12
of cores

Figure 2: Scalability graph of acceleration in tensor reconstruction filter comparing ITK vs TBB performance. Linear
acceleration is added as a reference

5 Conclusion

We developed a new, generic multithreading capability in ITK that achieves efficient dynamic task de-
composition using Intel®) TBB. We demonstrated improved performance compared to the multithreading
programming model implemented in ITK. Our new abstract class for multithreaded ITK filters is compatible
with the original multithreading model of ITK, making it straightforward to adopt.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

12

6 Practical notes

Alongside this paper, a sample dataset and a package is provided containing the source code and build
instructions that were used in this paper for an easy reproduction of the results. Outputs of the test filters
are in NHDR or NRRD extensions and can be visualized by any software displaying diffusion tensors, an
example application is Misterl [6]. By executing each filter computational time for the parallel part of the
code will be printed out in the console for the chosen multi-threading framework. An automatic bash script
parsing method is included in the package which generates speedup values for TBB and ITK threading
programming models.

References

[1] Anders H Andersen. On the rician distribution of noisy mri data. Magnetic resonance in medicine,
36(2):331-332, 1996. 3.2

[2] Peter J Basser and Derek K Jones. Diffusion-tensor mri: theory, experimental design and data analysis—a
technical review. NMR in Biomedicine, 15(7-8):456-467, 2002. 3.1

[3] Hakon Gudbjartsson and Samuel Patz. The rician distribution of noisy mri data. Magnetic resonance in
medicine, 34(6):910-914, 1995. 3.1

[4] Cheng Guan Koay, John D Carew, Andrew L Alexander, Peter J Basser, and M Elizabeth Meyerand.
Investigation of anomalous estimates of tensor-derived quantities in diffusion tensor imaging. Magnetic
Resonance in Medicine, 55(4):930-936, 2006. 3.1

[5] Cheng Guan Koay, Lin-Ching Chang, John D Carew, Carlo Pierpaoli, and Peter J Basser. A unify-
ing theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor
imaging. Journal of Magnetic Resonance, 182(1):115-125, 2006. 3.2

[6] Benoit Scherrer. http://www.benoitscherrer.com/misteri. 6

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

References 13

14

Acceleration

of cores

Figure 3: Scalability graph of acceleration in PSD tensor estimation filter comparing ITK vs TBB performance. Linear
acceleration is added as a reference

Figure 4: Outputs of TensorReconstructionFilter, bOImage, tensorimage and ADCImage.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

References 14

Figure 5: Comparison of mean squared residuals for LLS vs CNLS methods while residuals are normalized to the
largest value in two images.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	ITK Implementation
	The original static decomposition multithreading capability of ITK filters
	Our new TBB implementation

	Application and evaluation
	Background
	Tested algorithms

	Results
	Acceleration over ITK
	Filter outputs

	Conclusion
	Practical notes

