
A new implementation of
itk::ImageToImageFilter for efficient

parallelization of image processing algorithms
using Intel R© Threading Building Blocks

Release 0.00

Amir Jaberzadeh1, Benoit Scherrer1, Simon K. Warfield, Ph.D. 1

July 21, 2016

1Computational Radiology Lab (CRL), Boston Children’s Hospital, Harvard Medical School, 300

Longwood Ave, Boston MA 02115

Abstract

Modern medical imaging makes use of high performance computing to accelerate image acquisition,

image reconstruction, image visualization and image analysis. Software libraries that provide imple-

mentations of key medical imaging algorithms need to efficiently exploit modern CPU architectures. In

particular, workstations with small numbers of cores are being replaced by very high core count archi-

tectures, and by many integrated core architectures, which offer acceleration by vectorization and multi-

threading. The Insight Toolkit (ITK) is the premier open source implementation of medical imaging

algorithms, with a generic design for image processing filters that allows for many developers to rapidly

incorporate these algorithms in to new applications. While ITK filters benefit from a generic, platform

independent multithreading capability, the current implementation is difficult to exploit to achieve very

high performance. Specifically, ITK relies on a static decomposition of the image into subsets of equal

size which can be highly inefficient. Threads that terminate early due to uneven work throughout the

image finish early and do not contribute further to the processing of more complex regions, leading to

idle computational resources and longer execution times. Performance is also difficult to coordinate

across multiple algorithms, as the ITK filter assumes each filter operates independently but the global

implementation has an impact across filters. In this work, we propose a novel, simple to use, high per-

formance multithreading capability for ITK that accelerates the itk::ImageToImageFilter. We utilise a

workpile data decomposition strategy, and leave the task of optimal job scheduling on CPU cores to the

Intel R©library called Threading Building Blocks (TBB). We demonstrate the efficacy of multi-threading

with TBB in comparison to the itk::Multithreader class, through three simple example image analysis

algorithms. Our implementation provides a new multi-threaded itk::ImageToImageFilter that can be

conveniently reused to provide simple and efficient multi-threaded code across applications and algo-

rithm libraries. Our new implementation is distributed as open-source software to the community and is

straightforward to adopt.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

Contents 2

Contents

1 Introduction 2

2 ITK Implementation 4

2.1 The original static decomposition multithreading capability of ITK filters 4

2.2 Our new TBB implementation . 4

3 Application and evaluation 8

3.1 Background . 8

3.2 Tested algorithms . 9

4 Results 10

4.1 Acceleration over ITK . 10

4.2 Filter outputs . 11

5 Conclusion 11

6 Practical notes 12

1 Introduction

As medical imaging technology evolves, researchers and clinicians have access to higher resolution images.

Moreover, reseachers are developing novel, more complex algorithms to reconstruct and automatically an-

alyze those images. As a result, the computational burden of medical image analysis has substantially in-

creased in the last decade. While in the 2000’s, processor vendors have focused on increasing the processor

frequency to accelerate computation, this approach became limited due to power efficiency and reliability

issues at high frequencies. The new focus is now on increasing processor performance by developing multi-

core architectures, in which multiple processing units (i.e., cores) are placed on a single die together with

low-level cache memory and high performance buses for shared-memory inter-core communication.

Image processing algorithms can take advantage of multi-core architectures by running computations on

multiple cores at the same time. In a number of image analysis algorithms, the series of operations required

to create one output pixel are often independent from other output pixels. These algorithms represent the

perfect scenario for efficient parallelism since the same series of operations may be executed at every pixel

of the image simultaneously without any data race and without requiring data synchronization. A naive

implementation may be to create one thread for each pixel and rely on the operating system (OS) scheduler

to synchronize the execution of threads onto cores. This solution, however, leads to catastrophic overhead

because of the cost of context switching when switching between threads, which ruins both the cache and

the instruction pipelining implemented in modern processors. Moreover, the number of threads is generally

limited by the OS.

A classic solution, instead, is to decompose the image into subdomains and concurrently process each sub-

domains using a limited number of threads, the number of which being generally chosen equal to the number

of processor cores to minimize overhead.

An object-oriented programming model that follows this strategy is implemented in ITK. The available high-

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

3

level programming interface for multithreaded filters in ITK enables developers to easily implement shared-

memory algorithms for image processing in a platform-independent manner. The ITK implementation,

however, relies on a static decomposition of the image into subdomains of equal size, and on the static

instantiation of one thread for each subdomain. First, the ITK implementation creates a new set of threads

at each filter execution, which leads to unnecessary overhead. More importantly, the static decomposition

strategy used in ITK is highly inefficient when the computational complexity varies between subdomains. It

commonly leads to threads that terminate early and hibernate while the values at other voxels remain to be

computed, leading to a waste of computational resources and longer computational times.

A more efficient strategy is dynamic image decomposition, which aims at dynamically distributing the pro-

cessing load of image analysis among all available threads. It is typically implemented by considering a set

of smaller-scale tasks to complete (e.g., each slice of an image to compute) and a pool of threads that concur-

rently “consume” and complete the next available task. When the granularity of each task is well calibrated,

this strategy leads to minimal overhead and enables continuous and even distribution of the workload on

the processing resources. Determining the optimal granularity for each task, however, is not trivial - it is

problem dependent and, moreover, may evolve same problem.

The Intel R© Threading Building Blocks (TBB) library provides a direct, high-level, open-source, platform-

independent solution to this problem for shared-memory systems. Specifically, TBB provides a high level

abstraction of the concept of thread; it enables the developer to expose parallelism and share opportunities for

parallelism by defining tasks, without explicitly encoding the mapping of tasks onto actual threads. Instead,

the mapping of each task onto threads is performed automatically by TBB’s scheduler, taking into account

the system workload and automatically adjusting the processing granularity of each thread by achieving

a real-time, light-weight profiling of each task. This abstraction enables the developer to focus on the

implementation of each task instead of manually implementing the complex machinery to execute the tasks.

The TBB scheduler has been shown to cause limited overhead, leading to more efficient parallelization on

average and, in addition, ensuring improved scaling on future hardware.

In this work, we propose a new, generic ITK class named itk::TBBImageToImageFilter that achieves

efficient dynamic image decomposition for parallel image algorithms using Intel R© TBB. Importantly,

our new class is mostly compatible with the original ITK multithreading capability implemented in

itk::ImageToImageFilter, making it straightforward to adopt for the community. In aggregate, any

existing ITK filter can take advantage of our multithreading advances by changing the parent class to TB-

BImageToImageFilter and renaming ThreadedGenerateData() method.

The paper is organized as follows. First, we describe in Section 2 the implementation of our new

itk::TBBImageToImageFilter class. Second, we describe in Section 3 two test applications especially

suited to parallelism in the context of diffusion-weighted imaging processing, and evaluate the efficacy of

our implementation compared to the built-in ITK multithreading mechanism. Finally, we conclude in Sec-

tion 6 how the ITK community can straightforwardly take advantage of our novel efficient multithreading

capability.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

4

2 ITK Implementation

2.1 The original static decomposition multithreading capability of ITK filters

ITK is based on a generic representation of data objects and process objects, and on a generic way to connect

them together to build processing pipelines for image processing. Processing objects, which are also referred

to as ITK filters, typically operate on data objects to produce new data objects. Specifically, the base class

for all image algorithms producing a new image as output is itk::ImageToImageFilter. More than 185

algorithms inherits from this class in ITK 4.8.

The traditional, object-oriented way to implement a multithreaded image algorithm in ITK is to 1) imple-

ment a new class that inherits itk::ImageToImageFilter; and 2) overload the following virtual protected

methods:

void B e f o r e T h r e a d e d G e n e r a t e D a t a ()

2 void T h r e a d e d G e n e r a t e D a t a (c o n s t Output ImageRegionType &o u t p u t R e g i o n F o r T h r e a d ,

ThreadIdType t h r e a d I d)

4 void A f t e r T h r e a d e d G e n e r a t e D a t a ()

ThreadedGenerateData is the function called concurrently in each thread that contains the code to be

executed in parallel, with outputRegionForThread describing the portion of the output data the current

thread is responsible for generating. ThreadedGenerateData also requires a threadId dedicated to the

output data region in which thread is executing and threadId can be used before or after the parallel part

referring a specific region.

BeforeThreadedGenerateData and AfterThreadedGenerateData are single-threaded methods typically

used to prepare (e.g., allocate memory, pre-compute some values, etc.) or finalize (e.g., free memory, post-

compute some values over the entire image, etc.) the filter before and after the multithreaded processing,

respectively.

The actual multithreading capability of ITK filters (and execution of the methods mentioned above) is im-

plemented in itk::ImageSource::GenerateData() which is responsible for:

• Allocating the output data,

• Calling BeforeThreadedGenerateData(),

• Performing the static image decomposition,

• Creating and spawning the threads, each running the virtual method ThreadedGenerateData() on

one statically defined region,

• and Calling AfterThreadedGenerateData().

2.2 Our new TBB implementation

We propose a new class named itk::TBBImageToImageFilter that achieves efficient dynamic task de-

composition using Intel R© TBB while being mostly compatible with the original ITK multithreading pro-

gramming model described above.

Our new class itk::TBBImageToImageFilter inherits from itk::ImageToImageFilter so that

all default behaviors for several important aspects (e.g., allocation of the output image) are

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

2.2 Our new TBB implementation 5

compatible with the original multithreaded ITK filters. Our main contribution is a new

implementation of itk::TBBImageToImageFilter::GenerateData() that overrides the original

itk::ImageSource::GenerateData() to achieve dynamic task decomposition using TBB instead of the

static decomposition of ITK.

Using TBB requires to conceptualize what is the smallest possible task for the application. In this work we

considered it to be the computation of the values for one slice of the output image but it is possible to use a

line of data or a single voxel as the smallest possible task.

We used the high level parallel for template function of TBB to achieve parallel iterations over all the

slices of the image. The syntax for parallel for is as the following:

p a r a l l e l f o r (b locked range<i n t >(s t a r t , end , i n c r e m e n t) , F u n c t o r) ;

where blocked range<int>(start, end, increment) defines the range of values for the ’parallel for’

loop and Functor is a C++ class that defines the evaluation operator () that will be called concurrently by

each thread. Below is an example of functor that can be used with parallel for in TBB:

1 c l a s s MyFunctor {
p u b l i c :

3 void operator () (c o n s t b locked range<i n t>& r) c o n s t ;

} ;

Specifically, the code inside operator() is automatically called by TBB’s scheduler with the parameter r

describing a collection of tasks identified by a subrange of the for-loop range.

Dynamic decomposition of the image was achieved by using parallel for that ranges from 0 to the

number of slices NS. We implemented a TBB functor that converts a given set of slices (identified by

their indexes in [0,NS]) to a itk::ImageRegion. Then this region is passed to a virtual method called

TBBGenerateData() where parallel portion of filter computations are implemented. It is important to note

that in this API implementation ThreadedGenerateData() is replaced by TBBGenerateData() which

eliminates the need for passing threadId as an argument. In contrast to ITK threading strategy, TBBIm-

ageToImageFilter spawns more regions on image space and TBB scheduler dynamically decides the best

chunk size at runtime. So the number of times that TBBGenerateData() is called inside parallel for

is unknown beforehand. On the other hand, depending on the choice of smallest possible task, TBB can

generate a workpile with large number of tasks that makes tracking of all those tasks difficult and not ef-

ficient. To highlight this difference and avoid further ambiguities, usage of ThreadedGenerateData()

is deprecated and all derived classes should override TBBGenerateData(). Existing filters inherited

from itk::ImageToImageFilter, can benefit from this API by renaming ThreadedGenerateData() to

TBBGenerateData(). The most important part of our implementation is included below:

2 namespace i t k {

4 template< typename TInputImage , typename TOutputImage >

c l a s s TBBFunctor

6 {
p u b l i c :

8 t y p e d e f TBBFunctor S e l f ;

t y p e d e f TOutputImage OutputImageType ;

10 t y p e d e f typename OutputImageType : : C o n s t P o i n t e r O u t p u t I m a g e C o n s t P o i n t e r ;

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

2.2 Our new TBB implementation 6

t y p e d e f typename TOutputImage : : S izeType Outpu t ImageSizeType ;

12 t y p e d e f typename OutputImageType : : RegionType Output ImageRegionType ;

14 i t k S t a t i c C o n s t M a c r o (Inpu t ImageDimens ion , unsigned i n t ,

T Inpu t Image : : ImageDimension) ;

16 i t k S t a t i c C o n s t M a c r o (OutputImageDimension , unsigned i n t ,

TOutputImage : : ImageDimension) ;

18
t y p e d e f TBBImageToImageFi l ter<TInputImage , TOutputImage>

20 T b b I m a g e F i l t e r T y p e ;

22 TBBFunctor (T b b I m a g e F i l t e r T y p e ∗ t b b F i l t e r , c o n s t Outpu t ImageSizeType&

o u t p u t S i z e) : m TbbFi l t e r (t b b F i l t e r) , m OutputSize (o u t p u t S i z e) {}
24

void operator () (c o n s t t b b : : b locked range<i n t>& r) c o n s t

26 {
/ / Se tup t h e s i z e o f t h e j o b s t o be done

28 typename TOutputImage : : S izeType s i z e = m OutputSize ;

s i z e [Output ImageDimens ion − 1] = r . end () − r . b e g i n () ;

30
/ / Se tup t h e s t a r t i n g i n d e x

32 typename TOutputImage : : IndexType i n d e x ;

i n d e x . F i l l (0) ;

34 i n d e x [Output ImageDimens ion − 1] = r . b e g i n () ;

36 / / C o n s t r u c t an i t k : : ImageRegion

Output ImageRegionType myRegion (index , s i z e) ;

38
/ / Run t h e T h r e a d e d G e n e r a t e D a t a method !

40 m TbbFi l te r−>TBBGenerateData (myRegion) ;

42 }

44 p r i v a t e :

T b b I m a g e F i l t e r T y p e ∗m TbbFi l t e r ;

46 Outpu t ImageSizeType m OutputSize ;

} ;

48

50
/ / C o n s t r u c t o r

52 template< typename TInputImage , typename TOutputImage >

TBBImageToImageFi l ter< TInputImage , TOutputImage > :: TBBImageToImageFi l te r ()

54 {
/ / By d e f a u l t , do n o t d e f i n e t h e number o f t h r e a d s .

56 / / Le t TBB doing t h a t .

t h i s−>SetNumberOfThreads (0) ;

58 m NumberOfThreads = f a l s e ;

}
60

/ / D e s t r u c t o r

62 template< typename TInputImage , typename TOutputImage >

TBBImageToImageFi l ter< TInputImage , TOutputImage > : : ˜ TBBImageToImageFi l te r ()

64 { }

66 template< typename TInputImage , typename TOutputImage >

void TBBImageToImageFi l ter< TInputImage , TOutputImage > :: G e n e r a t e D a t a ()

68 {
/ / Get t h e s i z e o f t h e r e q u e s t e d r e g i o n

70 typename TOutputImage : : C o n s t P o i n t e r o u t p u t =

s t a t i c c a s t <TOutputImage ∗>(t h i s−>P r o c e s s O b j e c t : : Ge tOutpu t (0)) ;

72 typename TOutputImage : : S izeType o u t p u t S i z e =

o u t p u t−>GetReques t edReg ion () . G e t S i z e () ;

74 t h i s−>m NumberOfJobs = o u t p u t S i z e [Output ImageDimens ion − 1] ;

76 / / C a l l a method t h a t can be o v e r r i d e n by a s u b c l a s s t o a l l o c a t e

/ / memory f o r t h e f i l t e r ’ s o u t p u t s

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

2.2 Our new TBB implementation 7

78 t h i s−>A l l o c a t e O u t p u t s () ;

80 / / C a l l a method t h a t can be o v e r r i d d e n by a s u b c l a s s t o pe r fo rm

/ / some c a l c u l a t i o n s p r i o r t o s p l i t t i n g t h e main c o m p u t a t i o n s i n t o

82 / / s e p a r a t e t h r e a d s

t h i s−>B e f o r e T h r e a d e d G e n e r a t e D a t a () ;

84
/ / S e t up t h e number o f t h r e a d s . Only f o r t e s t i n g p u r p o s e s . Should

86 / / n o t be used i n p r a c t i c e .

t b b : : t a s k s c h e d u l e r i n i t i n i t (−2) ;

88 i f (m NumberOfThreads)

i n i t . i n i t i a l i z e (t h i s−>GetNumberOfThreads ()) ;

90 e l s e

i n i t . i n i t i a l i z e () ;

92
/ / Do t h e t a s k d e c o m p o s i t i o n u s i n g p a r a l l e l f o r

94 t b b : : p a r a l l e l f o r (t b b : : b locked range<i n t >(0 , t h i s−>m NumberOfJobs , 1)

, TBBFunctor<TInputImage , TOutputImage >(t h i s , o u t p u t S i z e)) ;

96
/ / C a l l a method t h a t can be o v e r r i d d e n by a s u b c l a s s t o pe r fo rm

98 / / some c a l c u l a t i o n s a f t e r a l l t h e t h r e a d s have comple t ed

t h i s−>A f t e r T h r e a d e d G e n e r a t e D a t a () ;

100 }
/ / Th i s method r e p l a c e s T h r e a d e d G e n e r a t e D a t a () and s h o u l d be o v e r r i d d e n by a s u b c l a s s

102 / / t o pe r fo rm p a r a l l e l c o m p u t a t i o n s . Th i s method i s c a l l e d i t e r a t i v e l y i n s i d e p a r a l l e l f o r

template< typename TInputImage , typename TOutputImage >

104 void TBBImageToImageFi l ter< TInputImage , TOutputImage >

: : TBBGenerateData (c o n s t Output ImageRegionType &)

106 {
s t d : : o s t r i n g s t r e a m message ;

108 message << ” i t k : : ERROR: ” << t h i s−>GetNameOfClass ()

<< ” (” << t h i s << ”) : ” << ” S u b c l a s s s h o u l d o v e r r i d e t h i s method ! ! ! ” ;

110 E x c e p t i o n O b j e c t e (FILE , LINE , message . s t r () . c s t r () , ITK LOCATION) ;

throw e ;

112 }
/ / Get maximum number o f j o b s

114 template< typename TInputImage , typename TOutputImage >

unsigned i n t TBBImageToImageFi l ter< TInputImage ,

116 TOutputImage > :: GetNumberOfJobs () c o n s t

{
118 re turn m NumberOfJobs ;

}
120

} / / namespace i t k

The resulting itk::TBBImageToImageFilter is compatible with the original multithreading capability im-

plemented in ITK. Specifically, any existing filter can take advantage of our new implementation by chang-

ing the parent class shown below and renaming the ThreadedGenerateData() to TBBGenerateData().

Using the old multithreading ITK capability:

namespace i t k {
2 template< typename TInputImage , typename TOutputImage >

c l a s s i t k M y I T K F i l t e r : p u b l i c I m a g e T o I m a g e F i l t e r< TInputImage , TOutputImage>

4 {
p u b l i c :

6 t y p e d e f I m a g e T o I m a g e F i l t e r< TInputImage , TOutpuImage > S u p e r c l a s s ;

Using our new generic multithreading capability:

namespace i t k {
2 template< typename TInputImage , typename TOutputImage >

c l a s s i t k M y I T K F i l t e r : p u b l i c TBBImageToImageFi l te r< TInputImage , TOutputImage>

4 {
p u b l i c :

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

8

6 t y p e d e f TBBImageToImageFi l te r< TInputImage , TOutpuImage > S u p e r c l a s s ;

3 Application and evaluation

In this Section, we describe three data-parallel algorithms in the context of diffusion-weighted image pro-

cessing. These example algorithms having different workload balance and granularity levels create an envi-

ronment to evaluate our new multithreading API in comparison to the original ITK multithreading strategy.

For comparison purposes we have included a run-time option to choose between TBB, ITK or both multi-

threading frameworks using a ”-u” flag in all commands.

3.1 Background

Diffusion-Weighted Imaging (DWI) is a MRI technique which is sensitive to orientation anisotropy of water

molecules in restricted structures. It allows us to study the geometry of human brain-like fiber tracts or can

be applied to compute clinical biomarkers usable for diagnosing diseases. Diffusion tensor estimation is the

process of fitting pre-defined diffusion models in the brain DWI images. This relationship is expressed by

the Stejskal-Tanner formula [2]

Si = S0e−bgT
i Dgi (1)

where Si is the observed signal for ith direction, S0 is the reference signal, b is a signal attenuation constant

called the ”b value”, gi is gradient vector of ith DW image, and D is matrix of unknown tensors. Having at

least six non co-linear gradient directions and at least one reference image, one can use least squares method

to find the best model fitted into the measured data. In practice, reference signal is also prone to noise and

artefact thus adding S0 signal into the estimation parameters can lead to a better estimation of true tensors.

For this purpose matrices of g and D are reshaped as below to compute 7 unknown parameters. Hence g is

a m×7 with m available diffusion directions and reference images.

g =













1 −b1g2
1x −b1g2

1y −b1g2
1z −2b1g2

1xg2
1y −2b1g2

1yg2
1z −2b1g2

1xg2
1z

.

.

.

1 −bmg2
mx −bmg2

my −bmg2
mz −2bmg2

mxg2
my −2bmg2

myg2
mz −2bmg2

mxg2
mz













(2)

and D is a 1×7 vector,

D =
[

ln(S0) Dxx Dyy DzzDxy Dyy Dyz

]

(3)

In order to solve Eq 1 for unknown parameters D, some DTI estimation methods like linear least squares

(LLS) and weighted linear least squares (WLLS) employs a linearized form of Eq 1 by considering its log-

arithm. On the other hand nonlinear least squares (NLS) methods minimize sum of squared errors between

measured and estimated signals which are directly computed from Eq 1. In practice, due to existence of

noise or artefacts, estimators happen to find tensors with negative eigen values which has no physical re-

alization. Constraining estimators to positive semi definite solutions is proposed in many studies while a

Cholesky factorization method is used here for this purpose [4]. In total, estimation methods developed in

this package are listed as LLS, WLLS, CLLS, CWLLS, NLS, WNLS, CNLS and CWNLS which C stands

for constrained and W is the weighted version. Also it is known that, at low signal-to-noise ratio (SNR),

pixel intensity values have a Rician distribution because of the interference of noise and separation of real

and imaginary components of the acquired images [3] so this package also includes a Rician noise correction

filter.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

3.2 Tested algorithms 9

3.2 Tested algorithms

Here we describe three algorithms specific to diffusion-weighted image processing. As mentioned in

Section 2, itk::TBBImageToImageFilter is compatible with the multithreading programming model of

itk::ImageToImageFilter, which enables straightforward comparison of performance between the two

classes.

Rician noise correction filter: In order to correct for the Rician noise, this filter called RicianNoiseCor-

rectionFilter follows the correction scheme presented in [1]. In this scheme, voxel intensity is replaced with

zero if it is lower than the Rician noise standard deviation or
√

A2 −σ
2 is substituted otherwise, where A and

σ
2 are voxel intensity and Rician noise variance respectively. For computation of the Rician noise variance,

this filter receives a mask of background region or a value set by user. While using multiple threads,

several instances of TBBGenerateData() iterate over their allocated image regions and generate corrected

signals for all voxels. Since this filter tests a simple condition with predictable computation size thereby

creates a balanced workload with a low granularity level. RicianNoiseCorrectionFilter recieves a NHDR

file and writes it back to a NHDR file with corrected voxel intensities for the use in next steps of this package.

RicianNoiseCorrectionFilter inputImage.nhdr correctedImage.nhdr -m background mask.nrrd -v

variance -c cores -u TBB/ITK/Both

Linear tensor estimation filter: This filter estimates diffusion tensors of Eq 1 using Linear least

squares (LLS) and weighted linear least squares algorithm (WLLS) based on the study by Koay [5]. This

filter estimates b0 and diffusion tensors formulated in D matrix for each voxel as described in section 3.1.

Tensor estimations are limited to a mask region if a brain mask is provided which creates an unbalanced

workload for different threads but granularity level is still low due to simple computations required in linear

methods. TensorReconstructionFilter is capable of working with images acquired both in multi-shell or

single-shell diffusion MRI data by reading and employing corresponding b-values from the input. Both 4D

NHDR and multiple 3D NRRD file formats are accepted in this implementation. Besides main tensor image

output, other optional outputs generated in this filter are estimated: b0 image, mean squared residuals image

and ADC map computed for each voxel which requires optional command line arguments provided as below.

TensorReconstructionFilter inputImage.nhdr -f mask.nrrd tensorImage.nrrd ADCImage.nrrd -r mean-

ResidualImage.nrrd -b b0Image.nrrd -m method -c cores -u TBB/ITK/Both

Constrained non-linear tensor estimation filter: In order to estimate physically viable and more

accurate tensors constrained non-linear least squares solutions to Eq 1 are implemented in this filter

to minimize cost functions expressing CNLS, CWNLS, CLLS and CWLLS problems as described in

section 3.1. Unknown parameters computed using TensorReconstructionFilter are then passed to this

filter to initialize a minimization step which aims to converge to a better set of tensor parameters. In

each voxel the algorithm computes new parameters if the initial b0 value is higher than a user defined

threshold and whether that voxel is located within the brain mask if provided. This example presents an

algorithm with higher granularity relative to number of iterations in the optimization process for each voxel.

This makes it harder to predict the required computations leading to a more unbalanced workload. This

filter optionally receives pre-computed tens and b0 images provided by user and if not available it calls

TensorReconstructionFilter for the initialization. In the end, it generates mean squared residuals image in

addition to output tensor image.

PSDTensorEstimationFilter inputImage.nhdr -p initialTensor.nrrd -b b0Image.nrrd -f mask.nrrd -r nu-

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

10

mOfIterarionsImage tensorImage.nrrd -o meanResidualImage.nrrd -m method -c cores -t thresh -u TB-

B/ITK/Both

4 Results

4.1 Acceleration over ITK

In this section acceleration performance is compared between ITK and TBB implementations of test filters

for different number of cores. For a fair comparison, each filter is executed 30 times on different machines

and the minimum time is used for comparisons as there is always some background tasks which increase

computation time. Acceleration is defined as ratio of execution time for single threaded divided by its multi-

threaded version. Time measurements are based on absolute wall clock time computed for parallel portions

of the code using tbb/tick count.h

Acceleration scalability graphs is shown in Figs 1 - 3 for three test filters respectively. The results show the

amount of acceleration by exploiting more computational resources.

Figure 1: Scalability graph of acceleration in Rician noise correction filter comparing ITK vs TBB perfor-

mance. Linear acceleration is added as a reference

In Fig 1 Rician noise correction filter shows ITK and TBB have equal performance while dealing with

balanced workload and low level of granularity. Linear tensor estimation filter is computed in presence

of the brain mask and as demonstrated in Fig 2, TBB outperforms ITK by smart utilization of resources

and dynamic scheduling of tasks in presence of workload imbalance. This pattern is more pronounced in

non-linear tensor estimation, Fig 3, in which the higher burden of computations leads to a larger perfor-

mance difference between ITK and TBB. In this case a growing performance gap is visible reaching to 66%

improvement for 12 cores. In the last two filters, ITK showed several acceleration jumps in presence of

work imbalance. This is caused by the way ITK splits image space and some newly divided regions working

on the background image, with few computations, do not contribute into a higher acceleration. Modifying

number of threads changes image partitions and the jumps occurs when image space is decomposed in a

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

4.2 Filter outputs 11

more balanced state.

4.2 Filter outputs

Fig 4 illustrates available outputs for TensorReconstructionFilter including tensor, b0 and ADC image. Both

tensor estimation filters generate mean squared residual images which demonstrates fitting error of DTI

model to the input data. In Fig 5 a comparison between mean squared residuals computed with LLS and

CNLS methods are presented. These residuals are normalized respective to maximum value available in

both images. As shown in Fig 5, CNLS method can provide a model with a better fit to the acquired images

due to lower mean residual values in general. This improvement is achieved in expense of computational

time, as linear estimator is computed in 0.83 seconds on a Xeon cpu with 12 cores, non-linear estimator

requires 8.15 second on a same machine.

Figure 2: Scalability graph of acceleration in tensor reconstruction filter comparing ITK vs TBB performance. Linear

acceleration is added as a reference

5 Conclusion

We developed a new, generic multithreading capability in ITK that achieves efficient dynamic task de-

composition using Intel R© TBB. We demonstrated improved performance compared to the multithreading

programming model implemented in ITK. Our new abstract class for multithreaded ITK filters is compatible

with the original multithreading model of ITK, making it straightforward to adopt.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

12

6 Practical notes

Alongside this paper, a sample dataset and a package is provided containing the source code and build

instructions that were used in this paper for an easy reproduction of the results. Outputs of the test filters

are in NHDR or NRRD extensions and can be visualized by any software displaying diffusion tensors, an

example application is MisterI [6]. By executing each filter computational time for the parallel part of the

code will be printed out in the console for the chosen multi-threading framework. An automatic bash script

parsing method is included in the package which generates speedup values for TBB and ITK threading

programming models.

References

[1] Anders H Andersen. On the rician distribution of noisy mri data. Magnetic resonance in medicine,

36(2):331–332, 1996. 3.2

[2] Peter J Basser and Derek K Jones. Diffusion-tensor mri: theory, experimental design and data analysis–a

technical review. NMR in Biomedicine, 15(7-8):456–467, 2002. 3.1

[3] Hákon Gudbjartsson and Samuel Patz. The rician distribution of noisy mri data. Magnetic resonance in

medicine, 34(6):910–914, 1995. 3.1

[4] Cheng Guan Koay, John D Carew, Andrew L Alexander, Peter J Basser, and M Elizabeth Meyerand.

Investigation of anomalous estimates of tensor-derived quantities in diffusion tensor imaging. Magnetic

Resonance in Medicine, 55(4):930–936, 2006. 3.1

[5] Cheng Guan Koay, Lin-Ching Chang, John D Carew, Carlo Pierpaoli, and Peter J Basser. A unify-

ing theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor

imaging. Journal of Magnetic Resonance, 182(1):115–125, 2006. 3.2

[6] Benoit Scherrer. http://www.benoitscherrer.com/misteri. 6

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

References 13

Figure 3: Scalability graph of acceleration in PSD tensor estimation filter comparing ITK vs TBB performance. Linear

acceleration is added as a reference

Figure 4: Outputs of TensorReconstructionFilter, b0Image, tensorImage and ADCImage.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

References 14

Figure 5: Comparison of mean squared residuals for LLS vs CNLS methods while residuals are normalized to the

largest value in two images.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	ITK Implementation
	The original static decomposition multithreading capability of ITK filters
	Our new TBB implementation

	Application and evaluation
	Background
	Tested algorithms

	Results
	Acceleration over ITK
	Filter outputs

	Conclusion
	Practical notes

