
Providing values of adjacent voxel
with vtkDiscreteMarchingCubes

Release 1.00

Roman Grothausmann1

July 21, 2016
1grothausmann.roman@mh-hannover.de,

Institute of Functional and Applied Anatomy, Hannover Medical School and
REBIRTH Cluster of Excellence, Hannover, Germany

Abstract

The contribution to VTK presented in this article is an extension to vtk::vtkDiscreteMarchingCubes
to also create vtk::vtkPointData scalars containing the value of the adjacent voxel. These can
be used to remove regions of the marching-cubes1 mesh depending on the local neighborhood.
The extension is based on the code of vtkDiscreteMarchingCubes of VTK-6.3.0 and is available
on GitLab https://gitlab.kitware.com/vtk/vtk/merge_requests/889 (and GitHub https://
github.com/Kitware/VTK/pull/18).

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3559]
Distributed under Creative Commons Attribution License

Contents

1 Introduction 2

2 Implementation 4

3 Testing (usage example) 4

4 Conclusions 5

5 Acknowledgement 5

http://www.vtk.org/doc/nightly/html/classvtkDiscreteMarchingCubes.html
http://www.vtk.org/doc/nightly/html/classvtkPointData.html
https://gitlab.kitware.com/vtk/vtk/merge_requests/889
https://github.com/Kitware/VTK/pull/18
https://github.com/Kitware/VTK/pull/18
http://www.insight-journal.org
http://hdl.handle.net/10380/3559
http://creativecommons.org/licenses/by/3.0/us/

2

1 Introduction

This extension to vtkDiscreteMarchingCubes makes it possible to let vtkDiscreteMarchingCubes also
create vtkPointData scalars containing the label value of the neighboring voxel in a label image. This
then allows to remove regions of the resulting mesh that are adjacent to specific labels. For example a
label image that was created by running a watershed filter on a distance map followed by masking with the
original binary segmentation, a common procedure to separate regions in a binary image at constrictions
(see e.g. Beare and Lehmann 3). Such a label image is shown in Fig. 1.

When creating meshes for each foreground label from such a label image the meshes are closed at the
constrictions where the separation was introduced, see 3D view in Fig. 1 and Fig. 2.

With the contributed extension to vtkDiscreteMarchingCubes the resulting mesh contains additional
points-scalars that hold the label value of the adjacent label for each point. A simple threshold that ex-
tracts the regions of the mesh that are adjacent to the background label (0) then makes it possible to remove
the capping at constrictions, see Fig. 2, 3.

For example looking at label 19 and 21 (extracted with a threshold on the cell-scalars generated by
vtkDiscreteMarchingCubes) which are adjacent to each other but mostly separated by the background
label, Fig. 3. An additional threshold on the point-scalars then removes the capping at the separation, Fig. 3.

An advantage of this kind of capping removal is that it is even possible after the mesh was modified by other
filters, e.g. smoothed by vtkWindowedSincPolyDataFilter avoiding borders. In most cases the resulting
meshes are not connected on the open border edges any more, i.e. there will be gaps between them. Such
gaps can be avoided with vtkCoplanarSurfaceExtractor4 but it has to be applied before smoothing.

Figure 1: Segmentation with touching labels
Slices of a label image that separates a segmentation at constrictions and also contains a background label (0, rendered fully

transparent). The cursor is on label 21 (light purple) which is adjacent to label 19 (dark pink). This is a screen-shot of ITKSnap2.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3559]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3559
http://creativecommons.org/licenses/by/3.0/us/

3

Figure 2:
left: Meshes generated by vtkDiscreteMarchingCubes for the label image shown above, colored differently and smoothed with

vtkWindowedSincPolyDataFilter. Note the capping at constrictions.

right: Result only displaying those regions of the meshes that were adjacent to the background label. Note that the capping is

removed.

Figure 3:
Showing only the meshes of label 21 (light grey) and 19 (dark grey) (top left). Regions of the mesh of label 21 are colored if adjacent

to other labels, e.g. red where 19 and 21 touch, i.e. where the separation took place. Other images show views of label 21 only, in

the bottom left the capping is removed.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3559]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3559
http://creativecommons.org/licenses/by/3.0/us/

4

2 Implementation

Below the partial listing of the patch that contains the essential changes:

diff --git a/Filters/General/vtkDiscreteMarchingCubes.cxx b/Filters/General/
vtkDiscreteMarchingCubes.cxx

index 3c04e25..93e04d2 100644
--- a/Filters/General/vtkDiscreteMarchingCubes.cxx
+++ b/Filters/General/vtkDiscreteMarchingCubes.cxx
@@ -217,7 +220,21 @@ void vtkDiscreteMarchingCubesComputeGradient(

x[2] = x1[2] + t * (x2[2] - x1[2]);

// add point
- locator ->InsertUniquePoint(x, ptIds[ii]);
+ if (locator ->InsertUniquePoint(x, ptIds[ii]))
+ {
+ if (ComputeAdjacentScalars)
+ {
+ // check which vert holds the neighbour value
+ if (s[vert[0]] == value)
+ {
+ newPointScalars ->InsertTuple(ptIds[ii],&s[vert[1]]);
+ }
+ else
+ {
+ newPointScalars ->InsertTuple(ptIds[ii],&s[vert[0]]);
+ }
+ }
+ }

}
// check for degenerate triangle
if (ptIds[0] != ptIds[1] &&

3 Testing (usage example)

A test based on TestDiscreteMarchingCube.py was created to monitor the newly added functionality:

diff --git a/Filters/General/Testing/Python/TestDiscreteMarchingCubesAdjacentScalars.
py b/Filters/General/Testing/Python/TestDiscreteMarchingCubesAdjacentScalars.py

index 07417c0..6d9ebaf 100755
--- a/Filters/General/Testing/Python/TestDiscreteMarchingCubesAdjacentScalars.py
+++ b/Filters/General/Testing/Python/TestDiscreteMarchingCubesAdjacentScalars.py
@@ -76,10 +76,21 @@ while i < n:
discrete = vtk.vtkDiscreteMarchingCubes()
discrete.SetInputData(blobImage)
discrete.GenerateValues(n, 1, n)

+discrete.ComputeAdjacentScalarsOn() # creates PointScalars
+
+thr = vtk.vtkThreshold()
+thr.SetInputConnection(discrete.GetOutputPort())
+thr.SetInputArrayToProcess(0, 0, 0, vtk.vtkDataObject.FIELD_ASSOCIATION_POINTS , vtk.

vtkDataSetAttributes.SCALARS) # act on PointScalars created by
ComputeAdjacentScalarsOn

+thr.AllScalarsOn() # default , changes better visible
+thr.ThresholdBetween(0, 0) # remove cells between labels , i.e. keep cells

neighbouring background (label 0)

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3559]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3559
http://creativecommons.org/licenses/by/3.0/us/

5

+
+vtu2vtp = vtk.vtkGeometryFilter()
+vtu2vtp.SetInputConnection(thr.GetOutputPort())

mapper = vtk.vtkPolyDataMapper()
-mapper.SetInputConnection(discrete.GetOutputPort())
+mapper.SetInputConnection(vtu2vtp.GetOutputPort())
mapper.SetLookupTable(lut)

+mapper.SetScalarModeToUseCellData() # default is to use PointScalars , which get
created with ComputeAdjacentScalarsOn

mapper.SetScalarRange(0, lut.GetNumberOfColors())

actor = vtk.vtkActor()

4 Conclusions

The extension to vtkDiscreteMarchingCubes presented here allows to selectively remove the sur-
face between adjacent labels. This is particularly useful when objects of a binary image were sepa-
rated at constrictions using the common approach of a watershed filter on the distance map. Using
vtkDiscreteMarchingCubes then to create surface meshes of the resulting label image even allows
smoothing before any capping removal, which avoids unsmoothed or distorted boundaries.

5 Acknowledgement

Thanks go to all who gave feedback on this at GitLab, GitHub and the mailing-list.

References

[1] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3D surface construction
algorithm. Computer Graphics, 21:163–169, July 1987. ISSN 0097-8930. doi: 10.1145/37402.37422.
(document)

[2] Paul Yushkevich et al. ITK-SNAP. open source, 3.2. URL http://www.itksnap.org. see Yushkevich
et al. 5 . 1

[3] Richard Beare and Gaëtan Lehmann. The watershed transform in ITK - discussion and new develop-
ments. Insight Journal, (92):1–24, June 2006. URL http://hdl.handle.net/1926/202. 1

[4] Roman Grothausmann. Extracting Intersections of Coplanar Surfaces (Boolean-operation on touching
meshes). The VTK Journal, (949):7, December 2014. doi: http://hdl.handle.net/10380/3504. URL
http://www.vtkjournal.org/browse/publication/949. 1

[5] Paul A. Yushkevich, Joseph Piven, Heather Cody Hazlett, Rachel Gimpel Smith, Sean Ho, James C.
Gee, and Guido Gerig. User-guided 3D active contour segmentation of anatomical structures: Signif-
icantly improved efficiency and reliability. NeuroImage, 31(3):1116 – 1128, 2006. ISSN 1053-8119.
doi: 10.1016/j.neuroimage.2006.01.015. 5

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3559]
Distributed under Creative Commons Attribution License

http://www.itksnap.org
http://hdl.handle.net/1926/202
http://www.vtkjournal.org/browse/publication/949
http://www.insight-journal.org
http://hdl.handle.net/10380/3559
http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	Implementation
	Testing (usage example)
	Conclusions
	Acknowledgement

