Cubic and Hermite splines for VTK

Release 1.00
Nicole Z. Kovacs', Terry M. Peters!?3 and Elvis C. S. Chen' 23

August 19, 2016

Tmaging Research Laboratories, Robarts Research Institute, University of Western Ontario, Canada
’Biomedical Engineering Graduate Program, University of Western Ontario, Canada
3Department of Medical Biophysics, University of Western Ontario, Canada

Abstract

A cubic spline is a spline where each curve is defined by a third-order polynomial, while a Hermite
spline has each polynomial specified in Hermite form, being computed using tangent information as well
as the position of the points. We propose two new classes for VTK, vtkCubicSpline and vtkHermiteS-
pline, which compute interpolating splines using a Cubic and a Hermite Spline Interpolation function,
respectively. We also propose two new auxiliary classes, vtkParametricCubicSpline and vtkParamet-
ricHermiteSpline, that create parametric functions for the 1D interpolating aforementioned splines.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3561]
Distributed under Creative Commons Attribution License

Contents

1 Introduction 1

2 Algorithm 2
2.1 CubicSpline. e e 2
2.2 HermiteSpline e e e e e 3

3 Demonstration 4

4 Code Snippet 5

1 Introduction

Splines are useful tools for interpolation of numeric data to obtain smooth continuous functions. They can be
used in computer graphics to visualize piece-wise curves and surfaces, beyond other applications. VTK pro-

http://www.insight-journal.org
http://hdl.handle.net/10380/3561
http://creativecommons.org/licenses/by/3.0/us/

vides some spline classes such as vtkCardinalSpline and vtkKochanekSpline, but they lack a few approaches.
We propose two new classes for VTK, vtkCubicSpline and vtkHermiteSpline. The first implements cubic
splines, having third-degree polynomials for each curve, and the second uses tangent information of the
points as well as their position to be computed by implementing the Hermite spline a spline curve where
each polynomial of the spline in is Hermite form.

Additionally, we propose two other new classes for VTK, vtkParametricCubicSpline and vtkParametricHer-
miteSpline, that present parametric functions for the one-dimensional splines mentioned, mapping a single
parameter u into a 3D point (x,y,z) using three instances of interpolating Cubic/Hermite splines.

As an example of application, the vtkHermiteSpline class was applied in a research [2][3] on a spatial
orientation device used in natural orifice transluminal endoscopic surgery (NOTES). NOTES involves the
passage of endoscopic and surgical tools through natural orifices, such as mouth, rectum, or vagina, with
subsequent entry into the peritoneum. It is an approach to minimally invasive surgery, where spatial ori-
entation is one of the challenges. In this research, a tracking system that provides certain points and their
tangential information was used for 3-dimensional imaging of the shape and orientation of the endoscope.
The vtkHermiteSpline class was used to create a spline that represented the endoscope tracked by receiving
its tracking information as input.

2 Algorithm

Both classes inherit from vtkSpline, thus being its concrete implementations. Let us explain the theory
behind them:

2.1 Cubic Spline
The vtkCubicSpline class implements the Cubic Spline [2], which is represented by:
qi(t) = ag + byt + it +dit? (D

where gx(t) is the k' piece of the spline and ¢ € [0, 1]. With this information we can deduce that:

qr(0) = px = ax (2)
qr(1) = pry1 = ax + b +cx +di 3)
4 (0) = Dy = by @)
Q;c(l) = by +2c; + 3d; ®))
Solving equations (2) to (5) yields:
Ak = Pk (6)
by = Dy @)
ck = 3(Vkg1 —Yk) — 2Dg — Dyy (8)
dy = 2(Yk — Yi+1) + Di + Dy 9

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3561]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3561
http://creativecommons.org/licenses/by/3.0/us/

2.2 HermiteSpline 3

The cubic spline also requires that the second derivatives match the control point, thus:

gr—1(1) = pk (10)
g1 (1) = g;(0) (11)
qx(0) = pr (12)
q-1(0) = ¢{(0) (13)
This results in a tridiagonal system [5] which can be resolved efficiently [4]:

_2 1 1T DO 1 [3()71 —yo)

1 4 1 D 3(y2—yo)

I 4 1 D, 3(y3—y1)
. : : = : (14)

14 1 D, > 3(Yn—1—Yn-3)
1 4 1 anl 3(yn—))n72)
L 1 2] | Dy | L 3(yn_yn—l) i

For a natural cubic spline, the second derivative at the end points are set to zero. Note that four control
points are needed to plot a cubic spline segment.

2.2 HermiteSpline

The vtkHermiteSpline class implements the Hermite Spline [1]. The Hermite interpolation in this algorithm
was computed with the aid of 4 basis functions:

hoo =262 =32 + 1= (1421)(1 —1)? (15)
hio=1 =22+t =1(1 —1)? (16)
hoy = =263+ 31> =12(3 - 21) (17)
hy=03—12 =@t -1) (18)

These functions are plotted in Figure 1. They compose the Hermite interpolation for they directly incorporate
tangential function. Given a point p; att = 0 and a point py4; at t = 1, a tangent my, at p; and a tangent
M4 at pr+1, the Hermite interpolation was computed as:

qi(t) = hoopr + hiomi + ho1 pi1 + hi1myg (19)

where g;(t) is the k' curve of the spline and ¢ € [0, 1].

For an ordered set of n control points with known tangents, a spline can be computed with the ordered
pair {{p1,p2},{p2.p3}, s {Pn-1,Pn}}. As q(0) = pr, (1) = prs1. q;(0) = my, and g; (1) = my1, the
Hermite spline is both C° and C! continuous, that is, the curves joined with the tangents are equal at the
control points. In order to interpolate p in a non-unit (arbitrary) interval [py, px+1], the tangent value must
be scaled to:

qi(t) = hoopi + hiohmy + hot piy1 + hy1hmy (20)

where h = py | — py and 1 = 32,

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3561]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3561
http://creativecommons.org/licenses/by/3.0/us/

— P

0 02 04 06 08 1

Figure 1: The basis functions for Hermite interpolation. Note that g;(0) = pr, qi(1) = pk+1), g;(0) = my, and
q,(1) = m¢k+1), as g is a linear combination of these functions.

3 Demonstration

As a demonstration, we sampled a set of points from a cone which was translated and rotated. You can see in
Figure 2 the x, y, and z axes, a cone for better visualization of the sample points, a dashed red line indicating
all the sample points, and spheres representing the ten points given to the splines. The red continuous curves
represent the Hermite spline, the green line represents the cubic spline, and the blue line represents the
Hermite spline with all the sample points as input (not only 10). We have represented the three splines
together in Figure 3 for comparison purposes.

% ¢ ¢
j:). 1 P /
.‘G; o ,O';.
|
Q. e N Q_
A | Ay L
o N oy
2 A A
o o o1l Lo
g |)
o o
:*x
4 ——— = N R 40 Ty o
"o =0 o
(a) Sample points (b) Hermite spline (c) Cubic spline (d) Hermite spline of all

sample points

Figure 2: demonstration of the different splines.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3561]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3561
http://creativecommons.org/licenses/by/3.0/us/

o M/
|
-
(a) Sample points and all (b) All splines

splines

Figure 3: Comparison between the three representations of splines with and without the sample points
plotted.

4 Code Snippet

vtkSmartPointer<vtkPoints> splinePoints = readerPoints->GetOutput->GetPoints();
vtkSmartPointer<vtkPoints> splineTangents = readerTangents->GetOutput->GetPoints();

// hermite spline

vtkSmartPointer<vtkHermiteSpline> hSplineX = vtkSmartPointer<vtkHermiteSpline>::New();
vtkSmartPointer<vtkHermiteSpline> hSplineY = vtkSmartPointer<vtkHermiteSpline>::New();
vtkSmartPointer<vtkHermiteSpline> hSplineZ = vtkSmartPointer<vtkHermiteSpline>::New();

vtkSmartPointer<vtkParametricFunctionSource> paraHSplineSource =
vtkSmartPointer<vtkParametricFunctionSource>: :New();

vtkSmartPointer<vtkParametricHermiteSpline> hermiteSpline =
vtkSmartPointer<vtkParametricHermiteSpline>: :New();

hermiteSpline->SetXSpline(hSplineX);
hermiteSpline->SetY¥Spline(hSplineY);
hermiteSpline->SetZSpline(hSplineZ);

hermiteSpline->SetPoints(splinePoints);
hermiteSpline->SetTangents(splineTangents);

paraHSplineSource->SetParametricFunction(hermiteSpline);
// cubic spline

vtkSmartPointer<vtkCubicSpline> cSplineX = vtkSmartPointer<vtkCubicSpline>::New();
vtkSmartPointer<vtkCubicSpline> cSplineY vtkSmartPointer<vtkCubicSpline>: :New () ;

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3561]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3561
http://creativecommons.org/licenses/by/3.0/us/

References 6

vtkSmartPointer<vtkCubicSpline> cSplineZ = vtkSmartPointer<vtkCubicSpline>::New();

vtkSmartPointer<vtkParametricFunctionSource> paraCubicSplineSource =
vtkSmartPointer<vtkParametricFunctionSource>: :New () ;
vtkSmartPointer<vtkParametricCubicSpline> cubicSpline =
vtkSmartPointer<vtkParametricCubicSpline>: :New();

cubicSpline->SetXSpline(cSplineX);

cubicSpline->SetY¥Spline(cSplineY)

cubicSpline->SetZSpline(cSplineZ);
t

cubicSpline->SetPoints(splinePoints

)i

paraCubicSplineSource->SetParametricFunction(cubicSpline);

References

[1] Richard H. Bartels, John C. Beatty, and Brian A. Barsky. An Introduction to Splines for Use in Computer
Graphics and Geometric Modeling. Morgan Kaufmann, San Francisco, CA, nov 1987. 2.2

[2] Elvis C. S. Chen, Sharyle A. Fowler, Lawrence C. Hookey, and Randy E. Ellis. Representing flexible
endoscope shapes with hermite splines. In Kenneth H. Wong and Michael 1. Miga, editors, Medical
Imaging 2010: Visualization, Image-Guided Procedures, and Modeling, volume 7625. SPIE, feb 2010.
1,2.1

[3] Sharyle Fowler, Mohamed S. Hefny, Elvis C.S. Chen, Randy E. Ellis, Dale Mercer, Diederick Jalink,
Andrew Samis, and Lawrence C. Hookey. A prospective, randomized assessment of a spatial orientation

device in natural orifice transluminal endoscopic surgery. Gastrointestinal Endoscopy, 73(1):123127,
jan 2011. 1

[4] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes
in C++. Cambridge, second edition, 2002. 2.1

[5] Eric W. Weisstein. Cubic spline. http://mathworld.wolfram.com/CubicSpline.html. [Online;
accessed 28-July-2015]. 2.1

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3561]
Distributed under Creative Commons Attribution License

http://mathworld.wolfram.com/CubicSpline.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3561
http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	Algorithm
	Cubic Spline
	HermiteSpline

	Demonstration
	Code Snippet

