
A programming environment for the
development of modular 3D biomedical image

processing applications
Release 0.00

Julien Montagner1, Alice Villéger1, Frédéric Flouvat2, Jean-Yves Boire1

July 1, 2006

1ERIM, Auvergne University, Clermont-Ferrand, France
{julien.montagner, alice.villeger, j-yves.boire}@u-clermont1.fr

2LIMOS, Blaise Pascal University, Clermont-Ferrand, France
flouvat@isima.fr

Abstract

ImageLib is a free object-oriented development environment destined to biomedical image process-
ing. The software package contains a programming library (C++ language) and an MDI user interface
(kernel). The major interest is to allow the creation of fully modular applications. Both user processing
functions and image read/write facilities are separately compiled as DLLs, and the resulting plugin ob-
jects are dynamically imported into the kernel. The libraryprovides all the required wrapping material
to incorporate all find of image processing functions into user-written components. A rapid prototyping
application is provided to communicate with the kernel communication interface. No graphics pro-
gramming skills is required to manage advanced user interactions, image display (e.g. OpenGLc©), and
generic image processing functions based on C++ templates.The component-oriented software architec-
ture makes it possible to share image processing and handling resources for light Windowsc©processing
applications.

Contents

1 Introduction 2

2 Software architecture 3
2.1 A software application based on ImageLib. 3

Structure of the programming library. 4
Use of the library to create the kernel application. 5

2.2 Data structures. 5
Generic handling of the images. 5
Data/visualization independence. 6

2.3 Built-in components and programming resources. 6
2.4 Technical solutions for modular decomposition. 6

Interface of processing modules. 6
Plugin structure and processing functions. 7

2

3 Plugin creation and integration 8
3.1 AutoLib . 8

User interface. 8
Generated files and user code. 9

3.2 Modules importation. 9

4 Current version 10

5 Conclusion 10

1 Introduction

Many software applications have been proposed for image processing inthe field of biomedical imaging [1]
[2] [3] [4]. Most are composed of processing functions integrated into a graphic user interface for image
handling and display, but do not allow the final user to incorporate his ownprocessing procedures within
this environment. The ability to write scripts often represents an intermediate solution to versatility [4], but
the user code is then limited to a sequence of existing processing functions. Image processing environments
that can dynamically import the required processes are far more common in commercial products, whether
these modules are written by the user [6] or sold by the software editor [1].
We propose a free image processing package called ImageLib, which contains both a prototyping tool to
support the creation and assessment of new processing functions anda dynamic environment allowing user
module sharing. ImageLib is not a new image processing library, but a development package helping in the
creation of image processing applications, possibly including functions from existing libraries in a coherent
user environment.

This new version of the development tool initially proposed by Collin et al. [5] was written in C++
(C++Builderc©environment, Borlandc©, Scotts Valley, USA) and designed to be highly modular. It has
multiple goals: besides supporting the conception of image processing functions, as in the first version, the
upgraded ImageLib aims at allowing users to easily share and select the processing modules they need, thus
providing a framework for creating user-friendly software applications. User procedures are organized in
independent and easy-to-maintain compilation units called ”plugins”. A central software component, called
the ”kernel”, provides a unique graphic interface for dynamically importingprocessing modules according
to specific user needs. ImageLib was initially designed to handle biomedical images, but is generic enough
to be used as a framework for general image processing.

In this paper, we present both the general functioning of the ImageLib package and some of the technical
elements that contribute to the modular architecture. An overview of the general architecture is given first,
including a presentation of some technical solutions adopted for the modular decomposition. The next part
focuses on communication between user plugins and the kernel application,through a detailed example of
plugin creation. Finally, we address issues related to the currently availableImageLib version and shared
plugins.

3

Figure 1:Global view of the ImageLib package

2 Software architecture

As in the first version of ImageLib, the development package contains botha library and a code generation
program (called AutoLib). The first visible difference concerns the kernel application: this user interface is
now compiled independently of all processing functions, and consists in anexecutable file provided in the
package (see Fig.1).

The ImageLib library has been compiled as a dynamic link library (DLL). It contains all the procedures and
data structures required to implement the image handling functions of the kernel. It also provides software
material for the creation of user processing functions.

The ImageLib kernel (see Fig.2) is a multiple document interface (MDI) application based on the library, in
which the user interface is made up of the parent window (theTFormPrincipal class see Fig.3), and where
MDI child windows are used to display open images (TWnd class). Both 2D and 3D biomedical images are
displayed as simple flat pictures (slice-by-slice presentation for 3D images) ingray scale, and color palette
management is a possible option. The parent window contains a static menu, allowing the user to access
classical image handling functions (image opening/recording, display control, etc.), as well as other more
specific functions (plugin loading/release, regions of interest,etc.). The menu bar also contains a dynamic
part that, initially empty, fills when processing modules are loaded. Moreover, an image control dialog box
is available to change the current slice (3D images) and adjust display (contrast and zoom).

2.1 A software application based on ImageLib

The object-oriented implementation and the architecture in several compilation units all contribute to the
modular design of both the library and processing applications based on ImageLib. From a functional point
of view, the tasks of such a software application can be divided into logicalunits:

• basic image handling and display

• management of image file formats

• advanced image processing functions

The first is common to all image processing applications based on ImageLib, and contains computing primi-
tives available for the two other groups. Image handling and display functions are implemented in the library
and reachable through the pre-compiled kernel. Processing functions are defined by the user in plugin files
compiled as independent DLLs. Image read/write routines are also implementedin special plugin modules,
called ”loaders” (see Fig.1). Each loader object is dedicated to the management of a given image file format,
and can be dynamically imported into the software application according to context and user needs.

2.1 A software application based on ImageLib 4

Figure 2:Window of the central application (kernel); three images are opened in MDI child windows, and the image

control box is visible

Structure of the programming library

The central ImageLib component is the pre-compiled library. Besides the base functions supplied for user
procedures, the C++ classes included in the library define the software interfaces required to ensure com-
munication between all ImageLib modules (see Fig.3).

TheTFormPrincipal class inherits its graphical behavior from the Borland VCLc©TForm class, and imple-
ments all the elements required by a classical MDI application using this base class. Moreover, it also allows
to manage the particular MDI child windows associated with theTWnd class (management of the displayed
TWnd list, creation of aTWnd object to display a new image,etc.). TWnd inherits from theTForm class too,
and adds a specific image display function for the image data contained in the associatedTImg objects.
TheTPluginLoader andTImageLoader classes cooperate with theTFormPrincipal class, and are used

Figure 3:Simplified UML class diagram of the ImageLib library, with superimposition of the most concerned package

components

2.2 Data structures 5

as software interfaces dedicated to the management of plugin DLL and image files. TheTPluginLoader
class buildsTPlugin objects from the user DLL and associates them with the kernel. TheTImageLoader
class receives all the image opening/saving orders from the kernel, andtransmits it to the appropriate loader
object, depending on the image file format.

Use of the library to create the kernel application

The executable file of the user interface is simply obtained by instantiating: aTFormPrincipal object a
TPluginLoader object aTImageLoader object. For a given instance of the kernel, each object in the above
list is unique. The operations they provide have to be accessible from each part of the user code, and not
only through the user interface. Objects of this essential set are in fact gathered within a data structure that
is reachable from the entire user code as a construction parameter ofTPlugin objects. This global structure
is an instance of theTApp (for ”application”) class (see Fig.3).

2.2 Data structures

The object-oriented design is the first modularity feature introduced in ImageLib to cope with the problems
mentioned in the introduction. The use of abstract data types leads to a program structure centered on data,
and encapsulated processing instructions are easier to maintain since they are clearly located in the code and
relatively independent from other parts of the program. Moreover, theinheritance mechanism introduced by
the object implementation allows a generic approach to image processing. Indeed, both the nature of image
data and contextual information linked to the image (e.g. patient or acquisition system) may be considered
as specialization parameters for the general concept of image.

Generic handling of the images

The TImg class describes the structures which contain image data.TImg objects are characterized by the
numerical type of the data array they contain (8/16-bit integer or 32-bit floating point value in ImageLib).
Whatever the data type, they also contain information about the spatial distribution of image data (number
of voxels) in the two (or three) spatial dimensions, and the anisotropy factor (3D images).

The template mechanism proposed by the C++ language provides a suitable solution to the problem of
specialization by a simple data type. This technical solution makes it possible to apply processing routines
written for general image objects to all kinds of data. However, C++ language is unable to handle pointer
parameters on generic objects for which the instantiation type is unknown. This problem appears when
trying to generate a prototype for a generic processing function, since main input and output parameters
areTImg objects. The abstractBaseTImg class has thus been inserted as aTImg parent class in a standard
inheritance relationship.BaseTImg is used as a non-template part of image objects and contains all the
attributes that are independent of the image data type.
The second specialization of image objects by context dependent data is implemented by simple aggregation
of an additional data structure of a user-subclass ofTSaveParams within the instance ofTImg (actually in
the generic part of the object,i.e. theBaseTImg parent class). TheTSaveParams object can be attached to
the relevant image and filled by the loader of the relevant file format during the loading operation.

2.3 Built-in components and programming resources 6

Figure 4:UML class diagram of the plugin communication system, from the plugin point of view

Data/visualization independence

The first ImageLib function using this generic mechanism is the image display. In order to respect the
data/visualization principle, all the related procedures were separated from theTImg class, and assigned to
the MDI child windows themselves,i.e. to theTWnd class. Since this graphical control class is unique, it
displays all kinds of image data, and thus manages them through aBaseTImg object (the ”displays” relation
betweenTWnd andTImg on Fig.3 in fact heads toward theBaseTImg class).

2.3 Built-in components and programming resources

The library also includes other useful programming resources. These are proposed either to help the pro-
grammer writing C++ code, or to allow the integration of user interactions in processing functions. Besides
built-in implementations of the loader abstract classes (FSF [5], raw and bitmap formats), ImageLib pro-
vides software material to handle graphical events onTWnd windows, manage regions of interest (ROIs), and
others. A text-mode debugging tool is also available.

2.4 Technical solutions for modular decomposition

The decomposition follows the same scheme in each case: for each modular element, the library includes
both a controller class (e.g. TPluginLoader) and an abstract base class (e.g. TPlugin) which acts as an
interface between the controller and the user-written code (Fig.4).

Interface of processing modules

Since the DLL technology is initially designed for the C language [7], and does not allow to export C++
classes. It remains possible to bypass this problem using a wrapping method. The DLL thus exports two C
functions, called from theTPluginLoader object:

2.4 Technical solutions for modular decomposition 7

• initPlugin(): builds an instance of theTMyPlugin class, which inherits fromTPlugin and contains
the specific user code, and then calls the plugin registration method of theTFormPrincipal object of
the kernel

• closePlugin(): calls the plugin release method ofTFormPrincipal and deletes theTMyPlugin
object.

Both theinitPlugin() and theclosePlugin() methods accept aTApp object as an input parameter.
This object, thereafter used as construction parameter for the plugin classes, contains all the information
required on the library objects built into the kernel application. It is thus used as the principal means of
communication with the ImageLib library.

The base code of theTMyPlugin class is generated by the AutoLib tool from user specifications. Its methods
are written by the user and, which forbids this class to be declared in the library. TMyPlugin inherits from
TPlugin, but a polymorphic call to processing methods remains impossible, since their number, name, and
prototype is different in all user plugins.
Plugin functions are associated with a menu, which is built directly in the constructor of theTMyPlugin
class usingTMenuItem (VCL c©class) objects, and then stored in its generic part. References to processing
methods are stored in the related leaf object of the menu tree. The entry pointof each processing function
is then transmitted to the kernel application when the registration method adds the plugin menu to the user
interface.

Plugin structure and processing functions

All the methods ofTMyPlugin possibly called from the kernel have the following prototype (P1):

void funcName(BaseTImg ** inImg, int nbIn, BaseTImg ** outImg, int nbOut);

TheinImg andoutImg parameters are the arrays of input and output images, respectively, containingnbIn
andnbOut images structures. Both the input and the output arrays containBaseTImg type data in order to
allow the kernel to send images of all numerical types. Input images are selected by the user before the
function call. Output images are automatically displayed inTWnd windows when the processing function
returns.

The ability to write fully generic image processing functions requires to propose user methods with the
modified prototype (P2):

template< class T >
void funcName(TImg<T> ** inImg, int nbIn, TImg<T> ** outImg, int nbOut);

The template parameterT defines the numerical type of image data contained in the input/outputTImg
objects. The compulsory prototype of methods runnable from the kernel requires the introduction of an
intermediate function, with prototype (P1). This non-template method is called instead of the user-defined
generic function. Its code (automatically generated by AutoLib) builds the appropriate instance of the
processing method according to the type of input images, and runs it in a waythat is transparent for the
user.

8

3 Plugin creation and integration

The aim of this section is to illustrate the practical application of technical elementsexplained in the previous
sections, from the user’s point of view. The development process using ImageLib is of course influenced
by both the software architecture and the chosen data structures, but many technical elements are hidden
and embedded to make the programmer’s task as easy as possible. We propose to detail this development
process by studying the practical example of a basic image processing operation (3D morphological erosion
on a grayscale set), implemented as a standard processing function (prototype (P1)), with a 3D/16-bit integer
input image, and producing an image of the same size and numerical type. Thegeneration of other kinds of
prototypes will also be mentioned.

3.1 AutoLib

The AutoLib application is composed of an executable file and a set of resource code files used by the
program to generate the user code. The executable file displays a graphical interface which allows the
user to input all the parameters related to both the plugin entity and each processing function. The joined
directory contains the files which compose the plugin skeleton,i.e. both the files required by the compilation
step (Borland C++Builderc©files), and the header/linkage files of ImageLib libraries.

User interface

The user interface of the code generation application is split into two parts (see Fig.5). The upper part is
dedicated to global plugin management, and is centered on the plugin menu. Thename ”Standard erosion”,
given to the processing procedure and the related menu item, refers to the lower part of the user interface.
The lower part allows to input parameters of the selected processing function. The name of the processing
procedure is modified in the ”Name” field of this second area (see Fig.5.b). This name only has a de-
scriptive/graphical interest, and is associated with the string ”standardErosion”. This string is the name
which will be given to the associated method, when the code of theTMyPlugin class will be generated.
This name thus has to respect C++ code conventions. Since we are working under the hypothesis that the
image to process will always have 16-bit integer data, the chosen method type is ”standard”, corresponding
to prototype (P1). For this kind of method, as for the ”generic” type (P2),the number of required input and
output images is indicated in the two next fields (possibly 0). ImageLib also allows to write C processing
functions, making such prototypes compatible with the previous version of ImageLib.

The second tab of the processing function description area is used to manage a list of tests performed on
input images before the method is called by the kernel (e.g. the numerical type of input images, set to 16
bits in the example).
The third tab of the processing function area allows to choose the image generation mode (e.g. automatically
or manually created in the body of the processing function) in the same way asthe input conditions. In
contrast to validity tests, this choice is compulsory for each image. In the caseof thestandardErosion
method, both the type of the unique output image and its size depends on the input image. The output image
is thus created with a ”Relative size” creation mode.

Each plugin is managed as an independent project. AutoLib allows to save plugin projects to disk, and
thereafter to open project files either to add new functions or to modify them, following the same process as
the one presented here. After each modification, the plugin code has to be regenerated.

3.2 Modules importation 9

Figure 5:The graphical user interface of the AutoLib code generation application, split in two parts: the upper area (a)

and a part of the lower area (b); example of a segmentation plugin specification

Generated files and user code

After the plugin is generated, the selected directory (see Fig.5.a) contains a complete Borland
C++Builderc©project, ready to be compiled. Paths to the header files of ImageLib classes are configured in
the project, and ImageLib libraries are also included. The majority of the pluginfiles has been copied from
the plugin skeleton associated with AutoLib (and renamed according to the plugin name).

Only three files are entirely generated by AutoLib:

• TMyPlugin.h: declaration of the plugin user class, including the prototypes of processing functions

• TMyPlugin.cpp: body of the C wrapping functions of the DLL file, of the class constructor(building
of bothTProcessing objects and plugin menu), and of intermediate methods for prototypes (P2) and
(P3)

• processing.h: skeleton of all the user functions.

User code is fully separated from all the technical classes. Thus, only one file has to be opened to write
a processing function, making this task accessible even to programmers notwell versed in object-oriented
programming.

3.2 Modules importation

The visible result of a plugin loading is the addition of the related item to the menu ofthe kernel window
(see Fig.6 the example plugin has been modified to show the standard erosion function in acomplete menu
tree; the related menu item is disabled, since no image is opened, while the first function takes no input
parameter). This item is dynamically deleted in the same way, when the plugin is released. Leafs of the
menu tree structure are the entry points of the processing functions.

The example function only needs one input image. This image is thus automatically selected from the
activeTWnd window when the menu item is clicked. When the function needs more than one input image, a
selection dialog box is automatically opened that displays the description stringsof the images to select. The
example function produces one output image, which is automatically displayed when the method returns.
Multiple output images would be displayed the same way, whether automatically or manually created. If the

10

Figure 6:Plugin menu item and submenus available when the plugin is loaded; example of the modified segmentation

plugin, with superimposition of the modified AutoLib area

data of an input image are modified, the linkedTWnd window is also refreshed.
Instead of adding a menu item in the MDI parent window, importing a loader modifies the list of supported
formats in the file open and file save dialog boxes.

4 Current version

The new ImageLib development package is commonly used by researchersof our lab as a shared develop-
ment environment. The new version was only recently released, and is still less widely used than the first
C version within the image and biomedical image processing research community.However, the modular
structure of ImageLib allows us to share processing tools within our lab, notonly with other ImageLib users,
but also via the integration of processing modules into other environments. ImageLib has thus become the
major collaboration tool with our research (e.g. French ”Institut National de la Recherche Agronomique”),
biomedical and industrial partners. All the known bugs have been fixed inthe current release, which is the
version we are using for now. However, ImageLib specifications are completed as and when new develop-
ment needs appear in the field of imaging research, and when new ideas emerge for improving the proposed
panel of development possibilities. The programming of new ImageLib versions is thus in progress, main-
taining the same development principles while introducing changes,e.g. in data structures, but no fully
stable version is yet available.

Availability

The whole ImageLib package is available on the website of our research lab1. This package contains the
AutoLib application, the library DLL files, the executable file of the kernel application, and a document
designed to help with the development of ImageLib-based applications. The released version has been
extensively tested under Windowsc©2000 and Windowsc©XP, running on a large range of hardware config-
urations (desktop and laptop computers). All the software applications based on ImageLib were developed
using the Borland C++Builderc©6.0 environment, as was ImageLib itself.
Neither the library code nor processing plugin are publicly available on the website for now, but it remains
possible to obtain some of them by contacting the authors.

5 Conclusion

In this paper, a new version of the ImageLib development package is presented. The main contribution
of this work is to propose a fully new software architecture for image processing applications based on

1http://www.u-clermont1.fr/erim/

http://www.u-clermont1.fr/erim/

References 11

ImageLib. The C++ programming library and the code generation application make it possible to develop
advanced image processing functions and easily integrate them into a common user interface managing all
the graphical aspects of 2D/3D image handling. The simple development principle makes this task accessible
even to programmers not well versed in neither object-oriented nor graphical programming. Moreover, this
new version of ImageLib is fully compatible with formerly written C functions.
Excluding the central kernel application, all the components of an image processing application may be
written by the programmer: processing plugins, image loaders and dedicatedcontext data storage objects,
new ROI shapes and user event handlers associated with image display windows. The inner data structures
of ImageLib are designed using the C++ template mechanism. Consequently, user processing functions
can be written as generic code. This new feature, while not affecting running performances, provides a
convenient development principle leading to user-friendly applications.
ImageLib thus makes it possible to design convenient image processing applications with a professional
feature and running even on low-end PCs, while it remains a fully free programming tool. We hope that
a wide use of this common environment within the biomedical image processing research community will
contribute to improve the resource sharing, possibly leading to propose thecreation of an image processing
module and code database.

Acknowledgements

The authors would like to thank Mr. David Couderc, engineer student, whowas in charge of a large part of
the ImageLib development. We also thank Mrs. Laurent Sarry, Vincent Barra and Christophe Tilmant for
the help they have provided for both this work and the redaction of this paper.

References

[1] V. Barra, P. Briandet, and J.-Y. Boire. Fusion in medical imaging: theory, interests and industrial
applications. InProceedings of the 10th Medinfo congress (London-UK 10), page 896900, 2001.1

[2] M. Bosc, T. Vik, J.-P. Armspach, and F. Heitz. Imlib3d: an efficient, open source, medical image pro-
cessing framework in c++. InProceedings of the 6th MICCAI conference (Montreal-Canada), volume
2879 ofLect. Notes in Comp. Sci., page 981983. Springer, 2003.1

[3] R. Clouard, A. Elmoataz, C. Porquet, and M. Revenu. Borg: a knowledge-based system for automatic
generation of image processing programs.IEEE Trans. Pattern Anal. Mach. Intell., 21(2):128–144,
1999.1

[4] Y. Cointepas, J.-F. Mangin, L. Garnero, J.-B. Poline, and H. Benali. Brainvisa: software platform for
visualization and analysis of multi-modality brain data.Neuroimage, 13(6):S98, 2001.1

[5] A. Colin and J.-Y. Boire. A novel tool for rapid prototyping and development of simple 3d medical
image processing applications on pcs.Comput. Meth. Prog. Bio., 53:8792, 1997.1, 2.3

[6] L. Ibanez, W. Schroeder, L. Ng, and J. Cates.The ITK software guide: the Insight segmentation and
registration toolkit (version 1.4). Kitware Inc., New-York-USA, 2003.1

[7] J. Richter.Programming applications for Microsoft Windows (4th edition). Microsoft Press, Redmond-
USA, 1999.2.4

	Introduction
	Software architecture
	A software application based on ImageLib
	Structure of the programming library
	Use of the library to create the kernel application

	Data structures
	Generic handling of the images
	Data/visualization independence

	Built-in components and programming resources
	Technical solutions for modular decomposition
	Interface of processing modules
	Plugin structure and processing functions

	Plugin creation and integration
	AutoLib
	User interface
	Generated files and user code

	Modules importation

	Current version
	Conclusion

