A programming environment for the
development of modular 3D biomedical image
processing applications

Release 0.00

Julien Montagnerl, Alice Villégerl, Frédéric Flouvatz, Jean-Yves Boirel

July 1, 2006

LERIM, Auvergne University, Clermont-Ferrand, France
{julien.montagner, alice.villeger, j-yves.boj@u-clermontl.fr

2LIMOS, Blaise Pascal University, Clermont-Ferrand, France
flouvat@isima.fr

Abstract

ImagelLib is a free object-oriented development envirortrdestined to biomedical image process-
ing. The software package contains a programming libramg#(fanguage) and an MDI user interface
(kernel). The major interest is to allow the creation ofyuthodular applications. Both user processing
functions and image read/write facilities are separatetpgiled as DLLs, and the resulting plugin ob-
jects are dynamically imported into the kernel. The librprgvides all the required wrapping material
to incorporate all find of image processing functions interusritten components. A rapid prototyping
application is provided to communicate with the kernel camioation interface. No graphics pro-
gramming skills is required to manage advanced user irttera; image displaye(g. OpenGL©), and
generic image processing functions based on C++ templBlbescomponent-oriented software architec-
ture makes it possible to share image processing and hgnékources for light Windowgprocessing

applications.
Contents
1 Introduction 2
2 Software architecture 3
2.1 Asoftware application basedonlImageLib 3
Structure of the programming library. oL 4
Use of the library to create the kernel applicatioan. 5
2.2 DatastruCturesS. o 5
Generic handling of theimages. 5
Data/visualization independence. e 6
2.3 Built-in components and programming reSOUrceso e . 6
2.4 Technical solutions for modular decomposition. 6
Interface of processingmodules L 6

Plugin structure and processing functions. 7

3 Plugin creation and integration 8
3.1 AUtOLIb . . . e 8
Userinterface. e e e 8
Generated filesand usercode e 9
3.2 Modulesimportation. e e 9
4 Current version 10
5 Conclusion 10

1 Introduction

Many software applications have been proposed for image processhwyfield of biomedical imagindl]

[2] [3] [4]. Most are composed of processing functions integrated into a graphicinterface for image
handling and display, but do not allow the final user to incorporate hispweoessing procedures within
this environment. The ability to write scripts often represents an intermediatéosdio versatility f], but
the user code is then limited to a sequence of existing processing functitege processing environments
that can dynamically import the required processes are far more commommeraial products, whether
these modules are written by the usgrdr sold by the software editod].

We propose a free image processing package called ImageLib, whithircoboth a prototyping tool to
support the creation and assessment of new processing functioasdgndmic environment allowing user
module sharing. ImageLib is not a new image processing library, but dogenent package helping in the
creation of image processing applications, possibly including functions éasting libraries in a coherent
user environment.

This new version of the development tool initially proposed by Collin et &] wWas written in C++
(C++Builder©environment, Borlan@), Scotts Valley, USA) and designed to be highly modular. It has
multiple goals: besides supporting the conception of image processing func®in the first version, the
upgraded ImageLib aims at allowing users to easily share and select tesgiray modules they need, thus
providing a framework for creating user-friendly software applicatiddser procedures are organized in
independent and easy-to-maintain compilation units called "plugins”. A desttitavare component, called
the "kernel”, provides a unique graphic interface for dynamically imponpiragessing modules according
to specific user needs. ImageLib was initially designed to handle biomedicalsntageas generic enough
to be used as a framework for general image processing.

In this paper, we present both the general functioning of the Imageldkaga and some of the technical
elements that contribute to the modular architecture. An overview of theaeanrehitecture is given first,
including a presentation of some technical solutions adopted for the modatangesition. The next part
focuses on communication between user plugins and the kernel applichtiomngh a detailed example of
plugin creation. Finally, we address issues related to the currently avaifabgeLib version and shared
plugins.

Plugin F | Loader

o user DLL
pre-compiled
— DLL

-

generates
R
i WA
=
T s
!
isimported in

executable
files

label jnteraction

A ----dependence

II AutoLib ” : - ~“ Kernel ﬂl

Figure 1:Global view of the ImageLib package
2 Software architecture

As in the first version of ImageLib, the development package containsabdthary and a code generation
program (called AutoLib). The first visible difference concerns thaé&kapplication: this user interface is
now compiled independently of all processing functions, and consists éxecutable file provided in the
package (see Fid).

The ImagelLib library has been compiled as a dynamic link library (DLL). titams all the procedures and
data structures required to implement the image handling functions of thd.kkeralso provides software
material for the creation of user processing functions.

The ImageLib kernel (see Fig) is a multiple document interface (MDI) application based on the library, in
which the user interface is made up of the parent windowTEoenPr i nci pal class see Fig), and where
MDI child windows are used to display open imag&ghd class). Both 2D and 3D biomedical images are
displayed as simple flat pictures (slice-by-slice presentation for 3D imaggsyrscale, and color palette
management is a possible option. The parent window contains a static meminglitbe user to access
classical image handling functions (image opening/recording, displayotoettr.), as well as other more
specific functions (plugin loading/release, regions of inteetsf). The menu bar also contains a dynamic
part that, initially empty, fills when processing modules are loaded. Moreamémage control dialog box

is available to change the current slice (3D images) and adjust displaygsoand zoom).

2.1 A software application based on ImageLib

The object-oriented implementation and the architecture in several compilaiignalircontribute to the
modular design of both the library and processing applications based geliba From a functional point
of view, the tasks of such a software application can be divided into logigts:

e basic image handling and display
e management of image file formats

e advanced image processing functions

The firstis common to all image processing applications based on ImageHibpatains computing primi-
tives available for the two other groups. Image handling and display furscéice implemented in the library
and reachable through the pre-compiled kernel. Processing functimdgfned by the user in plugin files
compiled as independent DLLs. Image read/write routines are also impleniesieecial plugin modules,
called "loaders” (see Fid.). Each loader object is dedicated to the management of a given imagerfilatfor
and can be dynamically imported into the software application according toxt@mie user needs.

2.1 A software application based on ImageLib 4

i## InvageLib

Contral Image Region ‘Window Help

= = B 18

Control
Center [_1 v 4264
YWidlth | | v| 8529

¥ Appheto all slices

Slice i [»1 104
Zoom | | v

| /

Figure 2:window of the central application (kernel); three images are opened in MDI child windows, and the image
control box is visible

Structure of the programming library

The central ImageLib component is the pre-compiled library. Besides gefhactions supplied for user
procedures, the C++ classes included in the library define the softwaréaes required to ensure com-
munication between all ImageLib modules (see Bjg.

TheTFor nPri nci pal class inherits its graphical behavior from the Borland \@TFor mclass, and imple-
ments all the elements required by a classical MDI application using this base ®lareover, it also allows
to manage the particular MDI child windows associated withTWel class (management of the displayed
TWhd list, creation of ar'wd object to display a new imagetc.). TWid inherits from theTFor mclass too,
and adds a specific image display function for the image data contained irsti@edisdl| ng objects.

The TPl ugi nLoader andTl nageLoader classes cooperate with th€or nPri nci pal class, and are used

H k Librar

e y

TPlugin k Timg
E displays

[T) S o TWnd - Loader 1.
) £ | iow H

= 7] H o

E g & -k

g £ 5 LS

7 = N\
TPluginLoader 4‘ TFormPrincipal TlmageLoader
uses uses
_)
Kernel

Figure 3:Simplified UML class diagram of the ImageLib library, with superimposition of the most concerned package
components

2.2 Data structures 5

as software interfaces dedicated to the management of plugin DLL and inegyeTheTPl ugi nLoader
class buildsTPl ugi n objects from the user DLL and associates them with the kernel. TTinegeLoader
class receives all the image opening/saving orders from the kernetaasunits it to the appropriate loader
object, depending on the image file format.

Use of the library to create the kernel application

The executable file of the user interface is simply obtained by instantiatingorarPr i nci pal object a

TPl ugi nLoader object aTl mageLoader object. For a given instance of the kernel, each object in the above
list is unique. The operations they provide have to be accessible frompaatof the user code, and not
only through the user interface. Objects of this essential set are indt#rgd within a data structure that

is reachable from the entire user code as a construction paramé&ggf n objects. This global structure

is an instance of th&App (for "application”) class (see Fig).

2.2 Data structures

The object-oriented design is the first modularity feature introduced in Ibilage cope with the problems
mentioned in the introduction. The use of abstract data types leads to amregucture centered on data,
and encapsulated processing instructions are easier to maintain sinceethiady located in the code and
relatively independent from other parts of the program. Moreoveintieritance mechanism introduced by
the object implementation allows a generic approach to image processingd]iwmieh the nature of image
data and contextual information linked to the image@.(patient or acquisition system) may be considered
as specialization parameters for the general concept of image.

Generic handling of the images

The Tl ng class describes the structures which contain image datay objects are characterized by the
numerical type of the data array they contain (8/16-bit integer or 32-kitifig point value in ImageLib).
Whatever the data type, they also contain information about the spatial distnitmfi image data (number
of voxels) in the two (or three) spatial dimensions, and the anisotropyrfi8foimages).

The template mechanism proposed by the C++ language provides a suitaiienstm the problem of
specialization by a simple data type. This technical solution makes it possibleltopgpcessing routines
written for general image objects to all kinds of data. However, C++ laggismunable to handle pointer
parameters on generic objects for which the instantiation type is unknowis. pfdblem appears when
trying to generate a prototype for a generic processing function, singeinpat and output parameters
areTl mg objects. The abstrad@aseTI ng class has thus been inserted a8 ey parent class in a standard
inheritance relationshipBaseTl ng is used as a non-template part of image objects and contains all the
attributes that are independent of the image data type.

The second specialization of image objects by context dependent data isempézl by simple aggregation
of an additional data structure of a user-subclasBSafiePar ans within the instance ofl ng (actually in
the generic part of the objedte. theBaseTl ng parent class). Th&SavePar ans object can be attached to
the relevant image and filled by the loader of the relevant file format duratptding operation.

2.3 Built-in components and programming resources 6

TPluginLoader %‘ TApp ‘

TFormPrincipal '—

initializes
releases

extracts data

registration

imports

references

‘ TProcessing ‘ |—{j%I'Menultem %

references

Figure 4:UML class diagram of the plugin communication system, from the plugin point of view

Datalvisualization independence

The first ImageLib function using this generic mechanism is the image dispragrder to respect the
data/visualization principle, all the related procedures were separatedfieTl ng class, and assigned to
the MDI child windows themselves.e. to theTWid class. Since this graphical control class is unique, it
displays all kinds of image data, and thus manages them throBagedl ng object (the "displays” relation
betweerTWid andTl ng on Fig.3in fact heads toward thgaseTl ng class).

2.3 Built-in components and programming resources

The library also includes other useful programming resources. Thiesgr@posed either to help the pro-
grammer writing C++ code, or to allow the integration of user interactions ingsieg functions. Besides
built-in implementations of the loader abstract classes (BRFdw and bitmap formats), ImageLib pro-
vides software material to handle graphical event¥\Wml windows, manage regions of interest (ROIs), and
others. A text-mode debugging tool is also available.

2.4 Technical solutions for modular decomposition

The decomposition follows the same scheme in each case: for each modulantekeadibrary includes
both a controller classe(g. TPl ugi nLoader) and an abstract base clagg(TPl ugi n) which acts as an
interface between the controller and the user-written code 4rig.

Interface of processing modules

Since the DLL technology is initially designed for the C languagle &4nd does not allow to export C++
classes. It remains possible to bypass this problem using a wrapping mé&tt@®LL thus exports two C
functions, called from th&Pl ugi nLoader object:

2.4 Technical solutions for modular decomposition 7

e initPlugin(): builds an instance of thEBWPI ugi n class, which inherits fromPl ugi n and contains
the specific user code, and then calls the plugin registration method T¥dhePr i nci pal object of
the kernel

e closePlugin(): calls the plugin release method ©for nPrinci pal and deletes th&MyPl ugi n
object.

Both thei ni t Pl ugi n() and thecl osePl ugi n() methods accept &8App object as an input parameter.
This object, thereafter used as construction parameter for the plugirslasstains all the information
required on the library objects built into the kernel application. It is thusl @sethe principal means of
communication with the ImageLib library.

The base code of tHBWPI ugi n class is generated by the AutoLib tool from user specifications. Its methods
are written by the user and, which forbids this class to be declared in theyliBiy Pl ugi n inherits from

TPl ugi n, but a polymorphic call to processing methods remains impossible, since tingren, name, and
prototype is different in all user plugins.

Plugin functions are associated with a menu, which is built directly in the canstraf theTM/Pl ugi n

class usingMenul t em(VCL(©)class) objects, and then stored in its generic part. References togimaces
methods are stored in the related leaf object of the menu tree. The entrypeath processing function

is then transmitted to the kernel application when the registration method addsgdirerpenu to the user
interface.

Plugin structure and processing functions

All the methods offMyPl ugi n possibly called from the kernel have the following prototype (P1):

void funcNane(BaseTlng ** inlng, int nbln, BaseTlng ** outlng, int nbQut);

Thei nl ng andout | ng parameters are the arrays of input and output images, respectivaigiréognbl n
andnbCQut images structures. Both the input and the output arrays coBaagill ng type data in order to
allow the kernel to send images of all numerical types. Input images argestley the user before the
function call. Output images are automatically displayedWhd windows when the processing function
returns.

The ability to write fully generic image processing functions requires to mepser methods with the
modified prototype (P2):

tenplate< class T >
voi d funcName(TIng<T> ** inlng, int nbln, Tlng<T> ** outlng, int nbQut);

The template parametdr defines the numerical type of image data contained in the input/oUitpugt
objects. The compulsory prototype of methods runnable from the kezgeires the introduction of an
intermediate function, with prototype (P1). This non-template method is calleGthefe¢he user-defined
generic function. Its code (automatically generated by AutoLib) builds theogppte instance of the
processing method according to the type of input images, and runs it in @ahatis transparent for the
user.

3 Plugin creation and integration

The aim of this section is to illustrate the practical application of technical eleregplgined in the previous

sections, from the user’s point of view. The development procesg UisiageL.ib is of course influenced
by both the software architecture and the chosen data structures, bytechnical elements are hidden
and embedded to make the programmer’s task as easy as possible. Waegmgetail this development
process by studying the practical example of a basic image processiregiop€3D morphological erosion

on a grayscale set), implemented as a standard processing functiomyipedtl)), with a 3D/16-bit integer

input image, and producing an image of the same size and numerical typgei@etion of other kinds of

prototypes will also be mentioned.

3.1 AutoLib

The AutoLib application is composed of an executable file and a set of n@scode files used by the
program to generate the user code. The executable file displays dcgtaplterface which allows the

user to input all the parameters related to both the plugin entity and eactsgiragéunction. The joined

directory contains the files which compose the plugin skeleterhoth the files required by the compilation
step (Borland C++Build€ofiles), and the header/linkage files of ImageLib libraries.

User interface

The user interface of the code generation application is split into two paesHig.5). The upper part is
dedicated to global plugin management, and is centered on the plugin mennmabe Standard erosion”,
given to the processing procedure and the related menu item, refers tovéireplart of the user interface.
The lower part allows to input parameters of the selected processintidiunthe name of the processing
procedure is modified in the "Name” field of this second area (see3). This name only has a de-
scriptive/graphical interest, and is associated with the stsmgridar dEr osi on”. This string is the name
which will be given to the associated method, when the code oftél ugi n class will be generated.
This name thus has to respect C++ code conventions. Since we are gvarider the hypothesis that the
image to process will always have 16-bit integer data, the chosen methaistigtandard”, corresponding
to prototype (P1). For this kind of method, as for the "generic” type (&) number of required input and
output images is indicated in the two next fields (possibly 0). ImageLib also @allowvrite C processing
functions, making such prototypes compatible with the previous version afdhila.

The second tab of the processing function description area is used tgenarniat of tests performed on
input images before the method is called by the keragl (the numerical type of input images, set to 16
bits in the example).

The third tab of the processing function area allows to choose the imagegenenode €.g. automatically

or manually created in the body of the processing function) in the same widne asput conditions. In
contrast to validity tests, this choice is compulsory for each image. In theofdke st andar dEr osi on
method, both the type of the unique output image and its size depends on thierage. The output image
is thus created with a "Relative size” creation mode.

Each plugin is managed as an independent project. AutoLib allows to sayim jpikojects to disk, and
thereafter to open project files either to add new functions or to modify tr@lowing the same process as
the one presented here. After each modification, the plugin code hasegdieerated.

3.2 Modules importation 9

25 Autolib -0l =l
r—Standard erosior
Plugin name: IBaSiC_processing Directory: ID:\plugins\BasicProc J General | Conditions or input data | Output images | Image dest
Plugin menu: Defined proc. functions: e | e IStandard Erosen Dl
- - T —— Erasion [m
=- B_amc:_proc:essmg Standard erosion Open | Method: l—standardErosion Fietumns ar
=8 H_egular functions
[Ctandard erosion
— ll Ll Method type: Istandard 'l
¥ | Save as | .
Input images: |1
ﬂl Output images: |1
X_l
C prototype: INU image 'l
Add a splitter | Add a submenu | Mew Delete |

Figure 5:The graphical user interface of the AutoLib code generation application, split in two parts: the upper area (a)
and a part of the lower area (b); example of a segmentation plugin specification

Generated files and user code

After the plugin is generated, the selected directory (see big) contains a complete Borland
C++Builder©project, ready to be compiled. Paths to the header files of ImageLib classesnigured in
the project, and ImageLib libraries are also included. The majority of the pfilginhas been copied from
the plugin skeleton associated with AutoLib (and renamed according to thie plaigne).

Only three files are entirely generated by AutoLib:

e TM/PI ugi n. h: declaration of the plugin user class, including the prototypes of priongeisictions

e TMyPI ugi n. cpp: body of the C wrapping functions of the DLL file, of the class construgtiaiding
of bothTPr ocessi ng objects and plugin menu), and of intermediate methods for prototypes (2) an
(P3)

e processing. h: skeleton of all the user functions.

User code is fully separated from all the technical classes. Thus, oelyile has to be opened to write
a processing function, making this task accessible even to programmenrglhwérsed in object-oriented
programming.

3.2 Modules importation

The visible result of a plugin loading is the addition of the related item to the methedernel window
(see Figb the example plugin has been modified to show the standard erosion functioonmpete menu
tree; the related menu item is disabled, since no image is opened, while tharitsoh takes no input
parameter). This item is dynamically deleted in the same way, when the pluginasedleLeafs of the
menu tree structure are the entry points of the processing functions.

The example function only needs one input image. This image is thus automatelaityesl from the
activeTWhd window when the menu item is clicked. When the function needs more than amdrimpge, a
selection dialog box is automatically opened that displays the description sifitigsimages to select. The
example function produces one output image, which is automatically displayed thie method returns.
Multiple output images would be displayed the same way, whether automaticallynoathacreated. If the

10

[=- Basic_processing
EI function call I
File <Control Image Region ‘Wwindow Help - Filtering
Basic_processing [S8 Fieqular functions
C Function call 4 '7 Function with no —
1equls ons.

Function with no input imal

i ImagelLib

- Standard erogion

Standard erasion Genernic ersion

GEEtc Erosion

Figure 6:Plugin menu item and submenus available when the plugin is loaded; example of the modified segmentation
plugin, with superimposition of the modified AutoLib area

data of an input image are modified, the linkehd window is also refreshed.
Instead of adding a menu item in the MDI parent window, importing a loader meedtike list of supported
formats in the file open and file save dialog boxes.

4 Current version

The new ImageLib development package is commonly used by reseaofloenslab as a shared develop-
ment environment. The new version was only recently released, and issgillvidely used than the first
C version within the image and biomedical image processing research commtdioitever, the modular
structure of ImageLib allows us to share processing tools within our lalpntytvith other ImageLib users,
but also via the integration of processing modules into other environmentgelifishas thus become the
major collaboration tool with our researohd. French "Institut National de la Recherche Agronomique”),
biomedical and industrial partners. All the known bugs have been fixdteiourrent release, which is the
version we are using for now. However, ImageLib specifications amptated as and when new develop-
ment needs appear in the field of imaging research, and when new ideggdaremproving the proposed
panel of development possibilities. The programming of new ImageLib vers$sothus in progress, main-
taining the same development principles while introducing chargegs,in data structures, but no fully
stable version is yet available.

Availability

The whole ImagelLib package is available on the website of our researchTais package contains the
AutoLib application, the library DLL files, the executable file of the kerngblaation, and a document
designed to help with the development of ImageLib-based applications. elémsed version has been
extensively tested under Windo@g000 and Window® XP, running on a large range of hardware config-
urations (desktop and laptop computers). All the software applicatiorsllwaslmageLib were developed
using the Borland C++Buildép6.0 environment, as was ImageLib itself.

Neither the library code nor processing plugin are publicly available on #issite for now, but it remains
possible to obtain some of them by contacting the authors.

5 Conclusion

In this paper, a new version of the ImageLib development package isntegs The main contribution
of this work is to propose a fully new software architecture for image [m%ing applications based on

Ihttp://ww. u-clermont1.fr/erin

http://www.u-clermont1.fr/erim/

References 11

ImageLib. The C++ programming library and the code generation applicatite mpossible to develop
advanced image processing functions and easily integrate them into a coreardntarface managing all
the graphical aspects of 2D/3D image handling. The simple developmenppgin@kes this task accessible
even to programmers not well versed in neither object-oriented norigedpinogramming. Moreover, this
new version of ImageLib is fully compatible with formerly written C functions.

Excluding the central kernel application, all the components of an imagegsimg application may be
written by the programmer: processing plugins, image loaders and dedamategkt data storage objects,
new ROI shapes and user event handlers associated with image dispilywsinThe inner data structures
of ImageLib are designed using the C++ template mechanism. Consequentlprosessing functions
can be written as generic code. This new feature, while not affectingjrrgrperformances, provides a
convenient development principle leading to user-friendly applications.

ImageLib thus makes it possible to design convenient image processingadipplscwith a professional
feature and running even on low-end PCs, while it remains a fully fregranoming tool. We hope that
a wide use of this common environment within the biomedical image processigycbscommunity will
contribute to improve the resource sharing, possibly leading to proposesigon of an image processing
module and code database.

Acknowledgements

The authors would like to thank Mr. David Couderc, engineer student,wason charge of a large part of
the ImageLib development. We also thank Mrs. Laurent Sarry, Vincemakad Christophe Tilmant for
the help they have provided for both this work and the redaction of thisrpape

References

[1] V. Barra, P. Briandet, and J.-Y. Boire. Fusion in medical imaging: mheimterests and industrial
applications. IrProceedings of the 10th Medinfo congress (London-UK 10), page 896900, 2001L

[2] M. Bosc, T. Vik, J.-P. Armspach, and F. Heitz. Imlib3d: an efficiemten source, medical image pro-
cessing framework in c++. IRroceedings of the 6th MICCAI conference (Montreal-Canada), volume
2879 ofLect. Notesin Comp. Sci., page 981983. Springer, 200B.

[3] R. Clouard, A. Elmoataz, C. Porquet, and M. Revenu. Borg: a kedge-based system for automatic
generation of image processing program&EE Trans. Pattern Anal. Mach. Intell., 21(2):128-144,
1999.1

[4] Y. Cointepas, J.-F. Mangin, L. Garnero, J.-B. Poline, and H. Befxainvisa: software platform for
visualization and analysis of multi-modality brain dadeurcimage, 13(6):S98, 20011

[5] A. Colin and J.-Y. Boire. A novel tool for rapid prototyping and demment of simple 3d medical
image processing applications on p€amput. Meth. Prog. Bio., 53:8792, 19971, 2.3

[6] L. Ibanez, W. Schroeder, L. Ng, and J. Cat@$e I TK software guide: the Insight segmentation and
registration toolkit (version 1.4). Kitware Inc., New-York-USA, 20031

[7] J. Richter.Programming applications for Microsoft Windows (4th edition). Microsoft Press, Redmond-
USA, 1999.2.4

	Introduction
	Software architecture
	A software application based on ImageLib
	Structure of the programming library
	Use of the library to create the kernel application

	Data structures
	Generic handling of the images
	Data/visualization independence

	Built-in components and programming resources
	Technical solutions for modular decomposition
	Interface of processing modules
	Plugin structure and processing functions

	Plugin creation and integration
	AutoLib
	User interface
	Generated files and user code

	Modules importation

	Current version
	Conclusion

