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Abstract

Anisotropic and isotropic diffusion equations have been extensively applied on biomedical image pro-
cessing for many years and a great diversity of algorithm have been proposed by the scientific com-
munity. Here, it is available a recent new implementation of the anomalous diffusion equation, based
on the Fokker-Planck PDE diffusion equation (also known as the Porous Media equation). The major
contribution of the anomalous process in the image processing area is the possibility to regulates a sub
or super-diffusion characteristic in the noise attenuation problem, which have been showed as a suit-
able solution for the preservation of fine details in complex objects such as the human brain. An ITK
Module is offered here in order to easily add the Anisotropic Anomalous Diffusion (AAD) and Isotropic
Anomalous Diffusion (IAD) filters in the ITK hierarchy.
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1 Brief Introduction About Anomalous Diffusion Process

Diffusion process is widely applied to digital image enhancement both directly introducing diffusion equa-
tion as in anisotropic diffusion (AD) filter, and indirectly by convolution as in Gaussian filter. Anomalous
diffusion process (ADP), given by a nonlinear relationship in diffusion equation and characterized by an
anomalous parameters ¢, is supposed to be consistent with inhomogeneous media.

The anomalous diffusion process (ADP) is a natural transport approach that occurs in complex media, lead-
ing to exponential variance evolution in time [12]. ADP generalizes classical diffusion by introducing a
power law in the heat flow equation, and is reasonably more adequate for complex media, e.g. biological
media [6] and theoretical physics [7]. ADP could be mathematically denoted by a power law in the Fokker-
Planck equation, leading to the generalized form presented in Equation (1). There are several generalizations
of the Fokker-Plank equation, which should give many different PDEs. Here we adopt only the so called
porous media form, allowing the super-diffusive and the sub-diffusive processes. Equation (1) shows the
generalized heat flow equation that is the main PDE equation for the anomalous diffusion paradigm. This
equation is the basis for the Anisotropic Anomalous Diffusion (AAD) and Isotropic Anomalous Diffusion
filters (IAD).
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Where p represents diffusing element concentration, D, denotes the generalized diffusion coefficient and g
is the power law parameter conveniently written. When g = 1, the Equation (1) recovers classical diffusion,
for g < 1 it represents sub-diffusive process, and when g > 1 it means super-diffusive phenomena are present
[12, 9]. D, is the diffusion coefficient function that regulates diffusibility. We can distinguish D, function
in isotropic: when the diffusion coefficient is the same for all direction, i.e. D, is direction invariant; and
anisotropic behavior: when D, is driven to specific directions, similar to Perona and Malik approach.

In fact, the AAD and IAD filter share a comparable behavior with the Perona and Malik anisotropic filtering
method and Gaussian smoothing, respectively. However, the major difference between the anomalous and
classical approach is the g value, which allow us to define super and sub diffusion process into the local
voxel weghting. Figure 1 illustrates a simple example of MRI brain images filtered from each method for
g < 1 (sub-diffusive process), g = 1 (classical process) and g > 1 (super-diffusive process).

More details about the theory of anomalous diffusion and the image filter implementation could be found in
[1] and some recent publications made with both image filtering methods could be seen in [2, 4, 5, 11, 10, 3].

2 Module Description

2.1 Filters Implementation

Proposed IAD and AAD filters are based on iterative numerical algorithms for ADP. The method used to
solve partial differential anomalous equations uses finite differences, of first and second order, when time and
space becomes discrete, i.e. digital images. Both isotropic and anisotropic approaches were implemented
through numerical differential operators using explicit numeric formulation, similar to AD filter [8].

Numerical approaches were implemented using differential operators in one dimension, and then rotated in
eight angle directions with respect to the central reference pixel. We can express this rotation in Equation
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2.1 Filters Implementation 3

Figure 1: Examples of the obtained visual qualities with different q values and filtering approaches. a is the
original image without additive noise and e is the image with non central ) noise of 15% intensity added. b,
c and d show the effect of IAD filtering for ¢ = 0.7, ¢ = 1.0 and g = 1.5, respectively. f, g and h show the
effect of AAD filtering for ¢ = 0.7, g = 1.0 and g = 1.5, respectively. Notice that the anomalous filters with
g = 1.5 are more effective in preserving the structure edges and maintaining an effective noise filtering for
the observed images regions than the classical AD filter (¢ = 1.0). The ¢ value with a non optimum filtering
behavior (g = 0.7), intentionally used to illustrate the importance of the q parameter.

Ipss1 = Lo, +L.V[D,.VIL ] 2)

Where Iy, and Iy, are the evaluated images in ¢; iterations, and Iy is the original image. D, is the
diffusion coefficient regulated by a power law with g [9], and ¢ are the possible orientations with respect
to the central pixel. Equation (2) assumes the time step constant [8] (A o< Af/Ax?) and it depends on the
numerical discretization. A careful time step determination plays an important role for numerical stability
[8]. The time step determination have a direct influence on the numeric discretization of the diffusion
equation and here it follows the same assumptions made for the classical anisotropic diffusion algorithm
[8]. More details about the time step parameters and numerical stability can be found in [1, 8].

The AAD filtering approach was proposed to regulate the diffusion intensity at the edge neighborhoods by
an edge stop function, i.e. the diffusion coefficient is attenuated at image gradients g(VI). For AAD filters,
i.e. parametric values ¢ # 1, the maximum values considered for D, are the same found for the IAD filter
due to the diffusion intensity stability. The diffusion coefficient for each pixel in the images follows the edge
preserving function g(VI) considering limits estimated by the function described in Equation (3). The edge
preserving stop function has the form given by Equation (4).

The generalized diffusion coefficient value, D,, must be consistent with ADP so that it can be used in IAD
and AAD filters [9]. The analytical form for D, must be consistent with the ADP time evolution of variance,
which follows 6> = 2.Dy.t, i.e. linear relationship for classical diffusion, and 62 o< 12/(3-9) e nonlinear
relationship for ADP [12]. One can deduce a generalized D, given by Equation (3):
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Where o0 = (2—¢)(3 —¢). When g # 1 Equation (3) denotes the diffusion coefficient (D,) that is consistent
with g-Gaussian probability distributions [12]. Since we can have lower diffusion coefficients, the function
in Equation (3) represents the upper limit for D, i.e. maximum coefficient applicable for image spaces.
Note that for classic diffusion equation, i.e. ¢ = 1, the diffusion coefficient D; applied to images lies in the
range 0 < D; < 1. Equation (3) was rewritten from [9] and adapted for numeric form.

We present the numerical algorithm for one dimension showing only x-axis for a better visualization. The
method can be generalized to higher dimensions with the appropriate considerations for the filter parameters
definition due to possible numeric instability. The convergence, stability and consistence are issues that
must be carefully studied for different numerical discretization. The numeric algorithm for the IAD filter is
summarized in Equation (5) and for the AAD filter in Equation (6).

Livi = Ly+A [Dq.vzl,i;q )]
= L,+A {Dq. (P8 — 2.0+ Ij;ﬁt)} (5)
Ax Ax
Lepr =Ly + A [Dq(x+ EJ)-VEIx,t + Dy (x— T’I)-VWIx,t)} ©

The sub-scripts N, S, E, W denote cardinal directions and this approach are similar to the classical anisotropic
filter method as described by the classical anisotropic filtering

Vnly = Ly-1—Ly
Vsley = Ly —1Ly
Veliy = Ly —1Ly
Vwlk, = L_1,—1, @)

2.2 Module Classes

The ITKAnomalousDiffusionFilters module provides two implementations of anomalous diffu-
sion process, which are denoted as the itkAnisotropicAnomalousDiffusionImageFilter and
itkIsotropicAnomalousDiffusionImageFilter. Each filter has its own characteristics over the output
results obtained in a multidimensional data, which the parameters set needed for each algorithm is explained
below.
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Parameters

In general, there are a common set of parameters which can be used for both anisotropic and
isotropic filters. In this case, the SetIterations(), SetQ() and SetTimeStep() are shared in
both methods. The SetCondutance () parameter should be adjusted in the AAD filter case and the
SetGeneralizedDiffusion () parameter should be adjusted in the IAD filter case.

Condutance This parameter takes the control of Equation (4), which directly sets the K variable. This edge
function is responsible to define what would be the filter criteria to preserve the image objects frontiers. A
higher value of Condutance will result in a strong smoothness around the background/foreground areas,
revealing a strong edge delimitation between structures. On the contrary, a lower value of Condutance
will result in a less disturbance in the general structure shapes, but with lower noise attenuation too. This
parameter is only used in itkAnisotropicAnomalousDiffusionImageFilter method. Values around
5.0 ~ 20.0 should be fine for the majority of applications.

GeneralizedDiffusion This parameter has a correspondence behavior with the Condutance parameter, but
in relation to the itkIsotropicAnomalousDiffusionImageFilter method. This parameter regulates the
D, variable as seen in Equation (5) which in a practical way defines how large is the g-Gaussian variability
(6?). One may note that the D, is also presented in Equation (6), but our implementation maintains it fixed
at the max[Dy(r,t)] for the itkAnisotropicAnomalousDiffusionImageFilter method.

TimeStep The time step variable is only a numerical constant that imposes a numerical stability to both
diffusion equations. Its constraints are defined in [1, 8] and is closely related to the image dimension used.
Both methods in ITKAnomalousDiffusionFilters module checks at the execution time if the TimeStep
value where set properly.

Iterations The number of iterations is responsible to set the time evolution in the numerical PDE, in both
diffusion paradigms. In other words, this parameter is responsible to define how strong will be the smooth-
ness of the whole image due to iterative update. Usually, an Iterations value around 5 ~ 10 could fit
properly for the majority of MRI structural images.

Q The anomalous parameter, or (, is the major parameter to set the type of probability distribution that
should be applied in the filtering procedure. In summary, this parameter regulates the sub and super diffusion
process in the whole image and should be well adjusted depending on the type of noise and image quality
used. More details about the g-Gaussian probability distribution family could be found in [12, 9]. In [1] it
was found a value of Q ~ 1.5 as the optimum case for MRI structural brain images. However, it is important
to apply a previous parameters evaluation beforehand the final application in your image dataset.

3 Practical Example

The following example illlustrates a simple usage of the itkAnisotropicAnomalousDiffusionImageFilter
class. The same implementation could be replicated with the
itkIsotropicAnomalousDiffusionImageFilter approach.
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Initally, for this example, we start declaring the basic classes that will be used for data reading, writing and
processing

#include "itkImage.h"

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

#include "itkAnisotropicAnomalousDiffusionImageFilter.h"

After that, the main () function could be initiated

int main(int argc, char* argvl[])
{

const unsigned int Dimension = 3;

typedef float PixelType;
typedef float PixelOutType;
typedef itk::Image<PixelType, Dimension> ImageTlype;

typedef itk::ImageFileReader<ImageType> ReaderType;
typedef itk::ImageFileWriter<ImageType> WriterType;

It is important to say that both image filters are capable to process multidimensional data, which in this
example it was set to Dimension = 3. Furthermore, it is important to highlight the PixelType and
PixelOutType, that defines the type of data expected as input and output, where it should be set to float
type in order to not restrict the local weighting estimative due to data precision. Since the majority of
biomedical data are encoded using double precision data types, it should not bring too much restriction to
the method.

After the usual data reading process, it could be inserted the image filtering class declaration, as follow

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName (argv[l]);

reader—->Update () ;

typedef itk::AnisotropicAnomalousDiffusionImageFilter<ImageType, ImageType> FilterType;
FilterType::Pointer filter = FilterType::New();

filter->SetInput (reader->GetOutput ());
filter->SetCondutance (std::atof (argv([3]));
filter->SetQ(std::atof (argv[4]));
filter->SetIterations(std::atoi(argv([5]));
filter->SetTimeStep(std::atof (argv[6]));
filter->Update();

Where the user could enter values to the variables SetCondutance, SetQ, SetIterations and
SetTimeStep. Each of these variables influenciates how strong or soft will be the smoothness level in
the output image and are described in section 2.2. It could be suggested the following order to help you set
the variables values regarding its order of importance: Q, Iterations, Condutance and TimeStep.

Next, the filter->GetOutput () call could be passed directly to the writer object and save its output
image. The following code part exemplify this

Latest version available at the Insight Journal [ http://hdl.handle.net/10380/3565]
Distributed under Creative Commons Attribution License


http://www.insight-journal.org
http://hdl.handle.net/10380/3565
http://creativecommons.org/licenses/by/3.0/us/

References 7

WriterType::Pointer writer = WriterType::New();

writer->SetFileName (argv[2]);

writer->SetInput ( filter->GetOutput () );
writer->Update();

return EXIT_SUCCESS;

Using this example it should be able to achieve the same output as seen in Figure 1.
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