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Abstract

This document describes a new remote module implemented for the Insight Toolkit ITK www.itk.org,

itkTextureFeatures. This module contains two texture analysis filters that are used to compute feature

maps of N-Dimensional images using two well-known texture analysis methods. The two filters con-

tained in this module are itkScalarImageToTextureFeaturesImageFilter (which computes textural fea-

tures based on intensity-based co-occurrence matrices in the image) and itkScalarImageToRunLength-

FeaturesImageFilter (which computes textural features based on equally valued intensity clusters of dif-

ferent sizes or run lengths in the image). The output of this module is a vector image of the same size

than the input that contains a multidimensional vector in each pixel/voxel. Filters can be configured

based in the locality of the textural features (neighborhood size), offset directions for co-ocurrence and

run length computation, the number of bins for the intensity histograms, the intensity range or the range

of run lengths. This paper is accompanied with the source code, input data, parameters and output data

that we have used for validating the algorithm described in this paper. This adheres to the fundamental

principle that scientific publications must facilitate reproducibility of the reported results.
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1 Introduction

Texture is an intuitive concept heuristically but difficult to define precisely. It can be defined as series

of homogeneous visual patterns that are observed in certain kinds of materials. Humans describe texture

through qualitative concepts such as fine, coarse, granulated or smooth. These descriptions are not precise

and, in addition, they are not quantitative. The texture quantification has been studied for a long time

and many different texture quantification and analysis techniques exist. The work presented here explores

texture quantification algorithms that provide a statistical description of the local texture of a 3D image and

produces N-Dimensional texture maps. More importantly, the work here presented allows to obtain these

outputs close to real-time.

ITK already contains tools for texture analysis such as itk::ScalarImageToTextureFeaturesFilter or

itk::ScalarImageToRunLengthFeaturesFilter. Each of these filters can be used in order to obtain a

N-Dimensional texture characterization of an image.

However, those filters are implemented to describe images globally and they are not optimized to be used

to describe local texture features. Using the existing filters to compute texture features iteratively for each

pixels’s neighborhood, in order to build texture maps, quickly becomes too time consuming. This is espe-

cially so when dealing with high resolution data, such as micro computed tomography (µCT) or on large

local neighborhoods of the input image.

The chosen solution, described in this article, consists in creating a new ITK re-

mote module (called itkTextureFeature) dedicated to the computation of feature maps

for N-Dimensional images. The filters implemented in itkTextureFeature com-

putes the exact same features as itk::ScalarImageToTextureFeaturesFilter

and itk::ScalarImageToRunLengthFeaturesFilter. However, the new algorithms

are optimized (particularly thanks to multithreading, itk::NeighborhoodIterator,

itk::ImageBoundaryFacesCalculator) to be able to compute the feature maps much faster.

All the features available in itkTextureFeature are presented in Section 2. Section 3 describes the filters

specifications (templates, inputs, parameters) of each filter and how to customize the use of these filters

to each different texture analysis application. Section 4 contain examples of code using itkTextureFeature

filters in Python and C++. Finally, Sections 5 and 6 present several scenarios, results and conclusions

obtained with itkTextureFeatures.
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2 Features Available

2.1 Co-occurence features

The computation of co-occurrence features is based on the grey level co-occurrence matrix (GLCM) com-

puted with itk::itkScalarImageToTextureFeaturesImageFilter for each pixel’s neighborhood. The

GLCM matrix describes intensity organization of each pixels’ neighborhood thanks to its second-order joint

probability function [6, 5, 2, 3]. In the following computations the nomenclature is as follows:

g(i, j) is the element in the cell (i, j) of the normalized GLCM

µ = ∑i, j i ·g(i, j) = ∑i, j j ·g(i, j) is the weighted pixel average

σ = ∑i, j(i−µ)2 ·g(i, j) = ∑i, j( j−µ)2 ·g(i, j) is the weighted pixel variance

µt and σt are the mean and standard deviation of the row (or column, due to symmetry) sums

itk::itkScalarImageToTextureFeaturesImageFilter computes the following features from the co-

occurrence matrix:

Energy is a feature that measures the local uniformity of texture. The higher the energy value, the bigger

the uniformity and organization of the texture.

f1 = ∑i, j
g(i, j)2 (1)

Entropy is a feature that expresses the level of organization of a texture. A completely random distribution

of grey-level intensities in the image volume would have very high entropy, while an image with the same

grey-level across all pixels would have very low value of entropy.

f2 =

{

∑i, j g(i, j)log2g(i, j) if g(i, j) 6= 0

0 if g(i, j) = 0
(2)

Correlation is a feature that measures the linear dependency of gray level values in the co-occurrence

matrix.

f3 = ∑i, j

(i−µ)( j−µ)g(i, j)

σ2
(3)

Inverse Difference Moment (IDM) is a feature that measures the homogeneity of the image. IDM will be

low for in-homogeneous images, and a higher value for homogeneous images.

f4 = ∑i, j

1

1+(i− j)2
g(i, j) (4)

Inertia or contrast is a feature that measures local grey-level variation in the GLCM matrix. If the neigh-

boring pixels in the texture are very similar in their grey-level values then the contrast in the image is very

low. Contrast is 0 for a constant image.

f5 = ∑i, j
(i− j)2g(i, j) (5)

Cluster Shade is a feature of the skewness of the matrix and is believed to be linked to perception of

uniformity in the image. When this feature is high the image is asymmetric.

f6 = ∑i, j
((i−µ)+ ( j−µ))3g(i, j) (6)
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Cluster Prominence is a feature that is also related to the perceptual symmetry of the image. When the

cluster prominence value is high, the image is less symmetric.

f7 = ∑i, j
((i−µ)+ ( j−µ))4g(i, j) (7)

Haralick’s Correlation is the original correlation measure designed by Haralick in 1973, and measures the

linear dependence between pixels relative to each other.

f8 =
∑i, j(i, j)g(i, j)−µ2

t

σ2
t

(8)

2.2 Run length features

The computation of the run length features is based on the grey level run length matrix (GLRLM) com-

puted inside itk::itkScalarImageToRunLengthFeaturesImageFilter for each pixel’s neighborhood.

A grey-level run is a set of consecutive, collinear picture points having the same grey-level value. The length

of the run is the number of picture points in the run. The GLRLM matrix describes each neighborhood local

texture. [4, 1, 8, 7]. In the following computations the nomenclature is as follows:

g(i, j) is the element in the cell (i, j) of the normalized GLRLM

i is related the pixel intensity and j to the length of the run

itk::itkScalarImageToRunLengthFeaturesImageFilter computes the following features:

Short run emphasis (SRE) measures the distribution of short runs. SRE is expected large for fine textures.

f1 =
∑i, j

g(i, j)
j2

∑i, j g(i, j)
(9)

Long run emphasis (LRE) is a feature that measures distribution of long runs. LRE is expected large for

coarse structural textures.

f2 =
∑i, j g(i, j) j2

∑i, j g(i, j)
(10)

Grey level non-uniformity (GLN) measures the similarity of grey-level values through out the texture. The

GLN is expected small if the grey-level values are alike throughout the whole texture.

f3 =
∑i(∑ j g(i, j))2

∑i, j g(i, j)
(11)

Run length non-uniformity (RLN) is a feature that measures the similarity of the length of runs through

out the image. The RLN is expected small if the run lengths are alike through out the image.

f4 =
∑ j(∑i g(i, j))2

∑i, j g(i, j)
(12)

Low grey level run emphasis (LGRE) is orthogonal to SRE, and the value of the feature increases when

the texture is dominated by many runs of low gray value.

f5 =
∑i, j

g(i, j)
i2

∑i, j g(i, j)
(13)
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High grey level run emphasis (HGRE) is orthogonal to LRE, and the metric increases when the texture is

dominated by many runs of high gray value.

f6 =
∑i, j g(i, j)i2

∑i, j g(i, j)
(14)

Short run low grey level emphasis (SRLGE) is a diagonal measurement that combines SRE and LGRE.

The metric increases when the texture is dominated by many short runs of low gray value.

f7 =
∑i, j

g(i, j)
i2 j2

∑i, j g(i, j)
(15)

Short run high grey level emphasis (SRHGE) is orthogonal to SRLGE and LRHGE and increases when

the texture is dominated by short runs with high intensity levels.

f8 =
∑i, j

g(i, j)i2

j2

∑i, j g(i, j)
(16)

Long run low grey level emphasis (LRLGE) is complementary to SRHGE, it increases when the texture is

dominated by long runs that have low gray levels.

f9 =
∑i, j

g(i, j) j2

i2

∑i, j g(i, j)
(17)

Long run high grey level emphasis (LRHGE) is the complementary metric to SRLGE and increases with

a combination of long, high-gray value runs.

f10 =
∑i, j g(i, j)i2 j2

∑i, j g(i, j)
(18)

3 Filters usage

3.1 itkScalarImageToTextureFeaturesImageFilter

For each pixel of the input image, the itkScalarImageToTextureFeaturesImageFilter will compute a serie of 8

co-occurrence texture features which will be contained in a vector. That way the output of the filter is a N-D

image where each pixel will contain a vector of 8 scalars. Each texture map can be extracted from the output

image afterward thanks to itk::NthElementImageAdaptor. By default the texture features are computed

for each spatial direction and averaged afterward to provide rotationally invariant texture descriptors.

Template Parameters (if used in C++):

• The input image type: a N-Dimensional image where the pixel type MUST be integer.

• The output image type: a N-Dimensional image where the pixel type MUST be a vector of floating

points or an ImageVector.
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Distributed under Creative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1NthElementImageAdaptor.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3574
http://creativecommons.org/licenses/by/3.0/us/


3.2 itkScalarImageToRunLengthFeaturesImageFilter 7

Inputs and parameters:

• An input image

• A mask defining the region over which texture features will be calculated. (Optional)

• The pixel value that defines the ”inside” of the mask. (Optional, defaults to 1 if a mask is set.)

• The number of intensity bins. (Optional, defaults to 256.)

• The set of directions (offsets) to average across. (Optional, defaults to (-1, 0), (-1, -1), (0, -1), (1, -1)

for 2D images and scales analogously for ND images.)

• The pixel intensity range over which the features will be calculated. (Optional, defaults to the full

dynamic range of the pixel type.)

• The size of the neighborhood radius. (Optional, defaults to 2.)

3.2 itkScalarImageToRunLengthFeaturesImageFilter

For each pixel of the input image, the itkScalarImageToTextureFeaturesImageFilter will compute a serie of

10 run length texture features which will be contain in a vector. That way the output of the filter is a N-D

image where each pixel will contain a vector of 10 scalars. Each texture map can be extracted from the

output image afterward thanks to itk::NthElementImageAdaptor. By default the texture features are

computed for each spatial direction and averaged afterward.

Template Parameters:

• The input image type: a N dimensional image where the pixel type MUST be integer.

• The output image type: a N dimensional image where the pixel type MUST be a vector of floating

points or an ImageVector.

Inputs and parameters:

• An input image

• A mask defining the region over which texture features will be calculated. (Optional)

• The pixel value that defines the ”inside” of the mask. (Optional, defaults to 1 if a mask is set.)

• The number of intensity bins. (Optional, defaults to 256.)

• The set of directions (offsets) to average across. (Optional, defaults to (-1, 0), (-1, -1), (0, -1), (1, -1)

for 2D images and scales analogously for ND images.)

• The pixel intensity range over which the features will be calculated. (Optional, defaults to the full

dynamic range of the pixel type.)

• The distance range over which the features will be calculated. (Optional, defaults to the full dynamic

range of double type.)

• The size of the neighborhood radius. (Optional, defaults to 2.)
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3.3 Recomandations

Using the itkTextureFeature’s filters with the default settings will lead, in all likelihood, to meaningless

results. In addition, those results might be really time consuming to compute.

To obtain significant results, most of the parameters need to be carefully chosen depending on the scale

of the texture and resolution of the input data, the other parameters and the significant information that

need to be revealed by the output. For example the pixel intensity range should be adapted to the actual

range of the input data in order to obtain a larger amplitude in the output feature maps. The radius (of the

neighborhood) should be chosen depending on the size of the anomaly/object that needs to be detected in

the input image. The distance range should correspond, in most cases, to the longer run length possible in

the neighborhood (it depend of the spacing in the input image, the radius of the neighborhood and the offset

directions).The choices of the number of bins should be adapted to the intensity/run length variation that

want to be observed as well as the intensity/distance ranges specified. Finally the offset direction can be

adapted if the anomaly/object that needs to be detected is specific to one known direction of the input image.

The usage of a Region Of Interest (ROI) mask is strongly advised, it will reduce the computation time by

avoiding computing features for the noisy/background parts of the image.

In addition to the settings, particular attention should be payed to the input data. Please consider cropping

the input are to contain only areas that will be interesting for the analysis. This will both help improving

the computation time, thanks to a better distribution of the threaded regions and avoiding memory problems

due to too large output data (considering that the output data is 8 or 10 times bigger than the input data).

The memory problem due to too large output data can also be solved by separating the output image con-

taining all the feature maps into several images containing one feature map each thanks to the itk class

itk::VectorIndexSelectionCastImageFilter.
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4 Practical exemples

4.1 C++

#include "itkScalarImageToRunLengthFeaturesImageFilter.h"

#include "itkImage.h"

#include "itkVector.h"

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

#include "itkNeighborhood.h"

int main(int argc, char * argv[])

{

if( argc != 10 )

{

std::cerr << "Usage: "<< std::endl;

std::cerr << argv[0];

std::cerr << " <InputFilePath> <MaskFilePath> <OutputFilePath> ";

std::cerr << " <NumberOfBinsPerAxis> <PixelValueMin> ";

std::cerr << " <PixelValueMax> <DistanceValueMin> " ;

std::cerr << " <DistanceValueMax> <NeighborhoodRadius> ";

std::cerr << std::endl;

return EXIT_FAILURE;

}

// Setup types

typedef itk::Image< int, 3 > InputImageType;

typedef itk::Image< itk::Vector< float, 10 > , 3 > OutputImageType;

typedef itk::ImageFileReader< InputImageType > readerType;

typedef itk::Neighborhood<typename InputImageType::PixelType,

InputImageType::ImageDimension> NeighborhoodType;

NeighborhoodType neighborhood;

// Create and setup a reader

readerType::Pointer reader = readerType::New();

reader->SetFileName( argv[1] );

// Create and setup a maskReader

readerType::Pointer maskReader = readerType::New();

maskReader->SetFileName( argv[2] );

// Apply the filter

typedef itk::Statistics::ScalarImageToRunLengthFeaturesImageFilter

< InputImageType, OutputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

filter->SetInput(reader->GetOutput());

filter->SetMaskImage(maskReader->GetOutput());

filter->SetNumberOfBinsPerAxis(std::atoi(argv[4]));

filter->SetPixelValueMinMax(std::atof(argv[5]),std::atof(argv[6]));

filter->SetDistanceValueMinMax(std::atof(argv[7]),std::atof(argv[8]));

neighborhood.SetRadius( std::atoi(argv[9]) );

filter->SetNeighborhoodRadius(neighborhood.GetRadius());

// Create and setup a writter

typedef itk::ImageFileWriter< OutputImageType > WriterType;

WriterType::Pointer writer = WriterType::New();

std::string outputFilename = argv[3];
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writer->SetFileName(outputFilename.c_str());

writer->SetInput(filter->GetOutput());

writer->Update();

return EXIT_SUCCESS;

}

4.2 Python

import itk, sys

if len(sys.argv) != 7:

print("Usage: " + sys.argv[0] + " <inputImagePath> <maskImagePath>"

" <NumberOfBinsPerAxis> <PixelValueMin> "

"<PixelValueMax> <NeighborhoodRadius>")

sys.exit(1)

im = itk.imread(sys.argv[1])

mask = itk.imread(sys.argv[2])

filtr = itk.ScalarImageToTextureFeaturesImageFilter.New(im)

filtr.SetMaskImage(mask)

filtr.SetNumberOfBinsPerAxis(int(sys.argv[3]))

filtr.SetPixelValueMinMax(int(sys.argv[4]), int(sys.argv[5]))

filtr.SetNeighborhoodRadius([int(sys.argv[6]),int(sys.argv[6]),int(sys.argv[6])])

result = filtr.GetOutput()

itk.imwrite(result, "result.nrrd")
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5 Results

We present concrete use case scenarios of the different filters of itkTextureFilters in this section. We used

itkTextureFilters to characterize subchondral bone texture in temporomandibular joint (TMJ) Osteoarthritis

(OA). To date, there is no single sign, symptom, or test that can clearly diagnose early stages of TMJ OA.

However, it has been observed that changes in the subchondral bone occur in very early stages of this disease

involving subchondral bone structural changes (texture) in the subchondral bone (i.e. bone marrow).

The different tools presented in this document aid detecting and highlighting those texture variations in order

to help clinicians to detect TMJ OA earlier.

In the test case (figure 1), the lower part of the condyle is healthy (normal bone trabeculae density) whereas

the upper part is characteristic of a TMJ OA case (low bone trabeculae density).

Figure 1: CBCT of the test condyle: this condyle suffers of a lack of trabecula in the upper part

5.1 itkScalarImageToTextureFeaturesImageFilter

The results exposed in this part were obtained by specifying the following parameters (the default parameters

were used for the other ones):

• Input data: Scan CBCT 13R.nrrd

• Input mask: SegmC CBCT 13R.nrrd

• Number of intensity bins: 10

• Pixel intensity range: [0; 4200]

• Neighborhood Radius: 6
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Figure 2: Texture’s energy (left) and texture’s entropy (right)

Figure 3: Texture’s correlation (left), texture’s inverse difference moment (center) and texture’s inertia (right)

Figure 4: Texture’s cluster shade (left) and texture’s cluster prominence (right)

Figure 5: Texture’s Haralick correlation

It seems that, the energy (figure 2), the entropy (figure 2), the correlation (figure 3), the inverse difference

moment (figure 3), and the inertia (figure 3) are discriminating the healthy part of the bone trabecula from
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the unhealthy part of the bone trabecula. The detection of a significant variation in several of those feature

maps could be interpreted in an early TMJ OA. In this particular case, the cluster shade feature map (figure

4), cluster prominence feature map (figure 4) and hahlick correlation feature map (figure 5) don’t seem to

discriminate different texture types within the TMJ condyle.

5.2 itkScalarImageToRunLengthFeaturesImageFilter

The results exposed in this part were obtained by specifying the following parameters (the default parameters

were used for the other ones):

• Input data: Scan CBCT 13R.nrrd

• Input mask: SegmC CBCT 13R.nrrd

• Number of intensity bins: 10

• Pixel intensity range: [0; 4200]

• Distance range: [0; 1.25]

• Neighborhood Radius: 4

Figure 6: Texture’s grey level non uniformity (left) and texture’s run length non uniformity (right)

Figure 7: Texture’s short run emphasis (left) and texture’s long run emphasis (right)
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Figure 8: Texture’s low grey level run emphasis (left) and texture’s high grey level run emphasis (right)

Figure 9: Texture’s short run low grey level emphasis (left) and texture’s short run high grey level run emphasis (right)

Figure 10: Texture’s long run low grey level emphasis (left) and texture’s long run high grey level emphasis (right)

Similarly to itkScalarImageToTextureFeaturesImageFilter, some output feature maps of itkScalarImage-

ToRunLengthFeaturesImageFilter characterize bone texture and provide discriminant values of low and high

density bone texture. Run length non uniformity (figure 6), short run emphasis (figure 7), long run emphasis

(figure 7), high grey level run emphasis (figure 8), short run high grey level run emphasis (figure 9) and long

run low grey level emphasis (figure 10) seem to have discriminant properties and differentiate healthy and

pathological bone trabecula. Here again some feature maps are not helpful in this particular case.
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6 Conclusion

This document presented a new fast and efficient tool to compute textural features in a N-Dimensional

image. These features are used to describe and detect variations in the image’s texture. A lot of the described

features are correlated to each other, so probably not using all of them at the same time is important. The

variety of features available allow to detect a large type of variations, and using any combination of them

might help texture characterization and discrimination. This method is currently used in a study aiming to

create a new method to detect TMJ OA at early stages using subchondral bone texture as a biomarker.
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