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Abstract

This document describes a new remote module implemented for the Insight Toolkit ITK www.itk.org,
itkTextureFeatures. This module contains two texture analysis filters that are used to compute feature
maps of N-Dimensional images using two well-known texture analysis methods. The two filters con-
tained in this module are itkScalarlmageToTextureFeaturesImageFilter (which computes textural fea-
tures based on intensity-based co-occurrence matrices in the image) and itkScalarImageToRunLength-
FeaturesImageFilter (which computes textural features based on equally valued intensity clusters of dif-
ferent sizes or run lengths in the image). The output of this module is a vector image of the same size
than the input that contains a multidimensional vector in each pixel/voxel. Filters can be configured
based in the locality of the textural features (neighborhood size), offset directions for co-ocurrence and
run length computation, the number of bins for the intensity histograms, the intensity range or the range
of run lengths. This paper is accompanied with the source code, input data, parameters and output data
that we have used for validating the algorithm described in this paper. This adheres to the fundamental
principle that scientific publications must facilitate reproducibility of the reported results.
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1 Introduction

Texture is an intuitive concept heuristically but difficult to define precisely. It can be defined as series
of homogeneous visual patterns that are observed in certain kinds of materials. Humans describe texture
through qualitative concepts such as fine, coarse, granulated or smooth. These descriptions are not precise
and, in addition, they are not quantitative. The texture quantification has been studied for a long time
and many different texture quantification and analysis techniques exist. The work presented here explores
texture quantification algorithms that provide a statistical description of the local texture of a 3D image and
produces N-Dimensional texture maps. More importantly, the work here presented allows to obtain these
outputs close to real-time.

ITK already contains tools for texture analysis such as itk::ScalarImageToTextureFeaturesFilter or
itk::ScalarImageToRunLengthFeaturesFilter. Each of these filters can be used in order to obtain a
N-Dimensional texture characterization of an image.

However, those filters are implemented to describe images globally and they are not optimized to be used
to describe local texture features. Using the existing filters to compute texture features iteratively for each
pixels’s neighborhood, in order to build texture maps, quickly becomes too time consuming. This is espe-
cially so when dealing with high resolution data, such as micro computed tomography (uCT) or on large
local neighborhoods of the input image.

The chosen solution, described in this article, consists in creating a new ITK re-
mote module (called itkTextureFeature) dedicated to the computation of feature maps

for N-Dimensional images. The filters implemented in itkTextureFeature com-
putes the exact same  features as itk::ScalarImageToTextureFeaturesFilter
and itk::ScalarImageToRunlengthFeaturesFilter. However, the new algorithms
are optimized (particularly thanks to  multithreading, itk::NeighborhoodIterator,

itk::ImageBoundaryFacesCalculator) to be able to compute the feature maps much faster.

All the features available in itkTextureFeature are presented in Section 2. Section 3 describes the filters
specifications (templates, inputs, parameters) of each filter and how to customize the use of these filters
to each different texture analysis application. Section 4 contain examples of code using itkTextureFeature
filters in Python and C++. Finally, Sections 5 and 6 present several scenarios, results and conclusions
obtained with itk TextureFeatures.
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2 Features Available

2.1 Co-occurence features

The computation of co-occurrence features is based on the grey level co-occurrence matrix (GLCM) com-
puted with itk::itkScalarImageToTextureFeaturesImageFilter for each pixel’s neighborhood. The
GLCM matrix describes intensity organization of each pixels’ neighborhood thanks to its second-order joint
probability function [6, 5, 2, 3]. In the following computations the nomenclature is as follows:

g(i, j) is the element in the cell (i, j) of the normalized GLCM

p=Yy, i-g(i,j) =Y, ;Jj-g(i,j) is the weighted pixel average

c= Z,-J(i—,u)2 -8, 7)) =X ;(J —u)? - g(i, j) is the weighted pixel variance

U and o; are the mean and standard deviation of the row (or column, due to symmetry) sums

itk::itkScalarImageToTextureFeaturesImageFilter computes the following features from the co-
occurrence matrix:

Energy is a feature that measures the local uniformity of texture. The higher the energy value, the bigger
the uniformity and organization of the texture.

fi=Y,80.))? ()

Entropy is a feature that expresses the level of organization of a texture. A completely random distribution
of grey-level intensities in the image volume would have very high entropy, while an image with the same
grey-level across all pixels would have very low value of entropy.

ﬁ:{zuﬂnﬁw&muﬂ if (i, j) #0 o

0 if g(i, j) =0

Correlation is a feature that measures the linear dependency of gray level values in the co-occurrence
matrix.

(i— ) (j —m)8(i. j)
A=Y = 3)
Inverse Difference Moment (IDM) is a feature that measures the homogeneity of the image. IDM will be
low for in-homogeneous images, and a higher value for homogeneous images.

1
fa= Zi,j mg(iaj) “)

Inertia or contrast is a feature that measures local grey-level variation in the GLCM matrix. If the neigh-
boring pixels in the texture are very similar in their grey-level values then the contrast in the image is very
low. Contrast is O for a constant image.

fs=3, (= )i )) (5)

Cluster Shade is a feature of the skewness of the matrix and is believed to be linked to perception of
uniformity in the image. When this feature is high the image is asymmetric.

fo= Y (i =)+ (i —u) g, j) (©6)
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Cluster Prominence is a feature that is also related to the perceptual symmetry of the image. When the
cluster prominence value is high, the image is less symmetric.

fr=Y =)+ —u) el ) (7)

Haralick’s Correlation is the original correlation measure designed by Haralick in 1973, and measures the
linear dependence between pixels relative to each other.

Y
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2.2 Run length features

The computation of the run length features is based on the grey level run length matrix (GLRLM) com-
puted inside itk::itkScalarImageToRunLengthFeaturesImageFilter for each pixel’s neighborhood.
A grey-level run is a set of consecutive, collinear picture points having the same grey-level value. The length
of the run is the number of picture points in the run. The GLRLM matrix describes each neighborhood local
texture. [4, 1, 8, 7]. In the following computations the nomenclature is as follows:

g(i, ) is the element in the cell (i, j) of the normalized GLRLM

i is related the pixel intensity and j to the length of the run
itk::itkScalarImageToRunLengthFeaturesImageFilter computes the following features:
Short run emphasis (SRE) measures the distribution of short runs. SRE is expected large for fine textures.
Yij g—(jl-’zj)
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Long run emphasis (LRE) is a feature that measures distribution of long runs. LRE is expected large for
coarse structural textures. )
- Zzng(l’J)J

YY)

Grey level non-uniformity (GLN) measures the similarity of grey-level values through out the texture. The
GLN is expected small if the grey-level values are alike throughout the whole texture.

f2 (10)
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Run length non-uniformity (RLN) is a feature that measures the similarity of the length of runs through
out the image. The RLN is expected small if the run lengths are alike through out the image.

o= Li(Eis )

Y8, ))
Low grey level run emphasis (LGRE) is orthogonal to SRE, and the value of the feature increases when
the texture is dominated by many runs of low gray value.

Li,
IDYITIN)
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High grey level run emphasis (HGRE) is orthogonal to LRE, and the metric increases when the texture is
dominated by many runs of high gray value.

CYijeli )i

Jo= Y80, j)

(14)

Short run low grey level emphasis (SRLGE) is a diagonal measurement that combines SRE and LGRE.
The metric increases when the texture is dominated by many short runs of low gray value.

8(i,j)
fy o Z (15)
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Short run high grey level emphasis (SRHGE) is orthogonal to SRLGE and LRHGE and increases when
the texture is dominated by short runs with high intensity levels.

gl
fom B P (16)
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Long run low grey level emphasis (LRLGE) is complementary to SRHGE, it increases when the texture is
dominated by long runs that have low gray levels.
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Long run high grey level emphasis (LRHGE) is the complementary metric to SRLGE and increases with
a combination of long, high-gray value runs.
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3 Filters usage

3.1 itkScalarimageToTextureFeaturesimageFilter

For each pixel of the input image, the itkScalarlmageToTextureFeaturesImageFilter will compute a serie of 8
co-occurrence texture features which will be contained in a vector. That way the output of the filter is a N-D
image where each pixel will contain a vector of 8 scalars. Each texture map can be extracted from the output
image afterward thanks to itk::NthElementImageAdaptor. By default the texture features are computed
for each spatial direction and averaged afterward to provide rotationally invariant texture descriptors.

Template Parameters (if used in C++):

e The input image type: a N-Dimensional image where the pixel type MUST be integer.

e The output image type: a N-Dimensional image where the pixel type MUST be a vector of floating
points or an ImageVector.

Latest version available at the Insight Journal [ http://hdl.handle.net/10380/3574]
Distributed under Creative Commons Attribution License


http://www.itk.org/Doxygen/html/classitk_1_1NthElementImageAdaptor.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3574
http://creativecommons.org/licenses/by/3.0/us/
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Inputs and parameters:

e An input image

e A mask defining the region over which texture features will be calculated. (Optional)

e The pixel value that defines the inside” of the mask. (Optional, defaults to 1 if a mask is set.)
e The number of intensity bins. (Optional, defaults to 256.)

e The set of directions (offsets) to average across. (Optional, defaults to (-1, 0), (-1, -1), (0, -1), (1, -1)
for 2D images and scales analogously for ND images.)

e The pixel intensity range over which the features will be calculated. (Optional, defaults to the full
dynamic range of the pixel type.)

e The size of the neighborhood radius. (Optional, defaults to 2.)

3.2 itkScalarimageToRunLengthFeaturesimageFilter

For each pixel of the input image, the itkScalarImageToTextureFeaturesimageFilter will compute a serie of
10 run length texture features which will be contain in a vector. That way the output of the filter is a N-D
image where each pixel will contain a vector of 10 scalars. Each texture map can be extracted from the
output image afterward thanks to itk::NthElementImageAdaptor. By default the texture features are
computed for each spatial direction and averaged afterward.

Template Parameters:

e The input image type: a N dimensional image where the pixel type MUST be integer.

e The output image type: a N dimensional image where the pixel type MUST be a vector of floating
points or an ImageVector.

Inputs and parameters:

e An input image

e A mask defining the region over which texture features will be calculated. (Optional)

e The pixel value that defines the “inside” of the mask. (Optional, defaults to 1 if a mask is set.)
e The number of intensity bins. (Optional, defaults to 256.)

e The set of directions (offsets) to average across. (Optional, defaults to (-1, 0), (-1, -1), (0, -1), (1, -1)
for 2D images and scales analogously for ND images.)

e The pixel intensity range over which the features will be calculated. (Optional, defaults to the full
dynamic range of the pixel type.)

e The distance range over which the features will be calculated. (Optional, defaults to the full dynamic
range of double type.)

e The size of the neighborhood radius. (Optional, defaults to 2.)
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3.3 Recomandations

Using the itkTextureFeature’s filters with the default settings will lead, in all likelihood, to meaningless
results. In addition, those results might be really time consuming to compute.

To obtain significant results, most of the parameters need to be carefully chosen depending on the scale
of the texture and resolution of the input data, the other parameters and the significant information that
need to be revealed by the output. For example the pixel intensity range should be adapted to the actual
range of the input data in order to obtain a larger amplitude in the output feature maps. The radius (of the
neighborhood) should be chosen depending on the size of the anomaly/object that needs to be detected in
the input image. The distance range should correspond, in most cases, to the longer run length possible in
the neighborhood (it depend of the spacing in the input image, the radius of the neighborhood and the offset
directions).The choices of the number of bins should be adapted to the intensity/run length variation that
want to be observed as well as the intensity/distance ranges specified. Finally the offset direction can be
adapted if the anomaly/object that needs to be detected is specific to one known direction of the input image.

The usage of a Region Of Interest (ROI) mask is strongly advised, it will reduce the computation time by
avoiding computing features for the noisy/background parts of the image.

In addition to the settings, particular attention should be payed to the input data. Please consider cropping
the input are to contain only areas that will be interesting for the analysis. This will both help improving
the computation time, thanks to a better distribution of the threaded regions and avoiding memory problems
due to too large output data (considering that the output data is 8 or 10 times bigger than the input data).

The memory problem due to too large output data can also be solved by separating the output image con-
taining all the feature maps into several images containing one feature map each thanks to the itk class
itk::VectorIndexSelectionCastImageFilter.
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4 Practical exemples

41 C++

#include "itkScalarImageToRunLengthFeaturesImageFilter.h"

#include "itkImage.h"

#include "itkVector.h"

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkNeighborhood.h"

int main(int argc, char * argvl[])

{
if( argc != 10 )
{
std::cerr << "Usage: "<< std::endl;
std::cerr << argv[0];
std::cerr << " <InputFilePath> <MaskFilePath> <OutputFilePath> ";
std::cerr << " <NumberOfBinsPerAxis> <PixelValueMin> ";
std::cerr << " <PixelValueMax> <DistanceValueMin> " ;
std::cerr << " <DistanceValueMax> <NeighborhoodRadius> ";
std::cerr << std::endl;
return EXIT_FAILURE;
}

// Setup types

typedef itk::Image< int, 3 > InputImageType;
typedef itk::Image< itk::Vector< float, 10 > , 3 > OutputlImageTlype;
typedef itk::ImageFileReader< InputImageType > readerType;

typedef itk::Neighborhood<typename InputImageType::PixelType,
InputImageType: :ImageDimension> NeighborhoodType;
NeighborhoodType neighborhood;

// Create and setup a reader
readerType::Pointer reader = readerType::New();
reader->SetFileName ( argv[l] );

// Create and setup a maskReader
readerType: :Pointer maskReader = readerType::New();
maskReader->SetFileName ( argv[2] );

// Apply the filter
typedef itk::Statistics::ScalarImageToRunLengthFeaturesImageFilter

< InputImageType, OutputImageType > FilterType;
FilterType::Pointer filter = FilterType::New();
filter->SetInput (reader->GetOutput ());
filter->SetMaskImage (maskReader->GetOutput ());
filter->SetNumberOfBinsPerAxis (std::atoi (argv
filter->SetPixelValueMinMax (std::atof (argv[5]
filter->SetDistanceValueMinMax (std::atof (argv
neighborhood.SetRadius ( std::atoi(argv([9]) );
filter—->SetNeighborhoodRadius (neighborhood.GetRadius());

[4}))

), std::atof (argv[6]));
[71), std ratof (argv([8]));
// Create and setup a writter

typedef itk::ImageFileliriter< OutputImageType > WriterType;

WriterType::Pointer writer = WriterType::New();
std::string outputFilename = argv[3];
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writer->SetFileName (outputFilename.c_str());
writer->SetInput (filter->GetOutput());
writer->Update();

return EXIT_SUCCESS;

4.2 Python
import itk, sys

if len(sys.argv) != 7:
print ("Usage: " + sys.argv[0] + " <inputImagePath> <maskImagePath>"
" <NumberOfBinsPerAxis> <PixelValueMin> "
"<PixelValueMax> <NeighborhoodRadius>")
sys.exit (1)

im = itk.imread(sys.argv[l])
mask = itk.imread(sys.argv([2])

filtr = itk.ScalarImageToTextureFeaturesImageFilter.New (im)
filtr.SetMaskImage (mask)

filtr.SetNumberOfBinsPerAxis (int (sys.argv([3]))
filtr.SetPixelValueMinMax (int (sys.argv([4]), int(sys.argv[5])
filtr.SetNeighborhoodRadius ([int (sys.argv([6]),int (sys.argv([6]),int (sys.argv[6])])

result = filtr.GetOutput ()

itk.imwrite (result, "result.nrrd")
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5 Results

We present concrete use case scenarios of the different filters of itkTextureFilters in this section. We used
itkTextureFilters to characterize subchondral bone texture in temporomandibular joint (TMJ) Osteoarthritis
(OA). To date, there is no single sign, symptom, or test that can clearly diagnose early stages of TMJ OA.
However, it has been observed that changes in the subchondral bone occur in very early stages of this disease
involving subchondral bone structural changes (texture) in the subchondral bone (i.e. bone marrow).

The different tools presented in this document aid detecting and highlighting those texture variations in order
to help clinicians to detect TMJ OA earlier.

In the test case (figure 1), the lower part of the condyle is healthy (normal bone trabeculae density) whereas
the upper part is characteristic of a TMJ OA case (low bone trabeculae density).

B: Scan CBCT 13R

Figure 1: CBCT of the test condyle: this condyle suffers of a lack of trabecula in the upper part

5.1 itkScalarimageToTextureFeaturesimageFilter

The results exposed in this part were obtained by specifying the following parameters (the default parameters
were used for the other ones):

e Input data: Scan_CBCT_13R.nrrd

Input mask: SegmC_CBCT_13R.nrrd

Number of intensity bins: 10

Pixel intensity range: [0; 4200]

Neighborhood Radius: 6
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Figure 3: Texture’s correlation (left), texture’s inverse difference moment (center) and texture’s inertia (right)
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Figure 4: Texture’s cluster shade (left) and texture’s cluster prominence (right)
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Figure 5: Texture’s Haralick correlation

It seems that, the energy (figure 2), the entropy (figure 2), the correlation (figure 3), the inverse difference
moment (figure 3), and the inertia (figure 3) are discriminating the healthy part of the bone trabecula from
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the unhealthy part of the bone trabecula. The detection of a significant variation in several of those feature
maps could be interpreted in an early TMJ OA. In this particular case, the cluster shade feature map (figure
4), cluster prominence feature map (figure 4) and hahlick correlation feature map (figure 5) don’t seem to
discriminate different texture types within the TMJ condyle.

5.2 itkScalarimageToRunLengthFeaturesimageFilter

The results exposed in this part were obtained by specifying the following parameters (the default parameters
were used for the other ones):

e Input data: Scan_CBCT_13R.nrrd

e Input mask: SegmC_CBCT_13R.nrrd

Number of intensity bins: 10

Pixel intensity range: [0; 4200]

Distance range: [0; 1.25]

Neighborhood Radius: 4

High value

B: resultVectorlma., . arateFeafufes

BlLow value

Figure 6: Texture’s grey level non uniformity (left) and texture’s run length non uniformity (right)
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.Luw value

Figure 7: Texture’s short run emphasis (left) and texture’s long run emphasis (right)
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Figure 8: Texture’s low grey level run emphasis (left) and texture’s high grey level run emphasis (right)

High value

.arateHeattres 6

.Luw value

Figure 9: Texture’s short run low grey level emphasis (left) and texture’s short run high grey level run emphasis (right)
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Figure 10: Texture's long run low grey level emphasis (left) and texture’s long run high grey level emphasis (right)

Similarly to itkScalarlmageToTextureFeaturesImageFilter, some output feature maps of itkScalarlmage-
ToRunLengthFeaturesImageFilter characterize bone texture and provide discriminant values of low and high
density bone texture. Run length non uniformity (figure 6), short run emphasis (figure 7), long run emphasis
(figure 7), high grey level run emphasis (figure 8), short run high grey level run emphasis (figure 9) and long
run low grey level emphasis (figure 10) seem to have discriminant properties and differentiate healthy and
pathological bone trabecula. Here again some feature maps are not helpful in this particular case.
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6 Conclusion

This document presented a new fast and efficient tool to compute textural features in a N-Dimensional
image. These features are used to describe and detect variations in the image’s texture. A lot of the described
features are correlated to each other, so probably not using all of them at the same time is important. The
variety of features available allow to detect a large type of variations, and using any combination of them
might help texture characterization and discrimination. This method is currently used in a study aiming to
create a new method to detect TMJ OA at early stages using subchondral bone texture as a biomarker.
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