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Abstract

This document describes the implementation of the external module ITKIsotropicWavelets, a multiresolution (MRA)
analysis framework using isotropic and steerable wavelets in the frequency domain. This framework provides the
backbone for state of the art filters for denoising, feature detection or phase analysis in N-dimensions. It focus on
reusability, and highly decoupled modules for easy extension and implementation of new filters, and it contains a
filter for multiresolution phase analysis,

The backbone of the multi-scale analysis is provided by an isotropic band-limited wavelet pyramid, and the detec-
tion of directional features is provided by coupling the pyramid with a generalized Riesz transform. The generalized
Riesz transform of order N behaves like a smoothed version of the Nth order derivatives of the signal. Also, it is
steerable: its components impulse responses can be rotated to any spatial orientation, reducing computation time
when detecting directional features.

This paper is accompanied with the source code, input data, parameters and output data that the author used for
validating the algorithm described in this paper. This adheres to the fundamental principle that scientific publications
must facilitate reproducibility of the reported results.

Latest version available at the Insight Journal [ http://hdl.handle.net/10380/3558]
Distributed under Creative Commons Attribution License
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1 Wavelet Multiresolution Analysis

1.1 Introduction

This module is an implementation for ITK of the work made by: [1, 2, 3, 4, 5, 6, 7].

Learning about wavelets from research papers is not easy. The topic is rich and deep, the same tool has spanned
different research fields, from theoretical physics, to seismology and signal processing. Yves Meyer has won the Gauss
Price (2010), and Abel Price (2017) in Mathematics for “his pivotal role in the development of wavelets and multi-
resolution analysis”. The detection of Gravitational waves with the LIGO experiment involved the use of wavelets to
analyse the signals.

Stephan Mallat [8] had also a fundamental role to develop the Multiresolution Analysis (MRA) and make the imple-
mentation available for applications.

The steerable framework [1, 2] is widely used in applications to rotate the filter bank to any direction, avoiding
expensive computations.

We will also implement more recent work [4, 6, 5] that uses the Riesz transform (a natural generalization of the Hilbert
transform for N dimensions) to provide a generalization and extra flexibility to the steerable pyramid.

1.2 Motivation: spatial and frequency resolution

Wavelets share the same motivation than the short-time FFT, or the windowed Fourier transform: get a representation
of the signal/image/function that is well localized in space and frequency domains. Heisenberg Uncertainty principle
applies here and it is called the Heisenberg-Gabor limit: ∆t ·∆f ≥ 1

4π , limiting the simultaneous resolution of a signal
in time-frequency. The Fourier transform, which is the representation of the signal in the basis of harmonic functions
{sin(f), cos(f)} ∀f ∈ R, is completely localized in frequency ∆f = 0, but has global support in space, i.e infinitely
de-localized in space ∆t =∞.

A few examples to illustrate the concept: In a discrete case, such as an image, this means that the FFT has the highest
resolution on frequency, but where, in the spatial domain, a specific frequency occurs is reduced to ‘somewhere’,
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bounded by the size of the image (Figure 1, 2a). Or in signals occurring only in one time-lapse: they can’t be differen-
tiated from the same signal occurring continuously, so they will share similar spectra representation (Figure 1). In the
same line, non-stationary signals which frequency depends on time will give a spectrum where all those frequencies
are represented, but there is no information about when, in time, the change of frequency occurred.
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Figure 1: The changes over time/space of a signal are not captured by the FFT.

The short-time FFT add spatial/time localization dividing the original signal in small, consecutive segments, and
applying the FFT to each of those. The problem with this approach, besides being computationally expensive, is that
events shorter than the time window are still not resolved and that the width of the segment is constant (Figure 2b).
Would it be possible to have better spatial resolution for some components of the frequency spectra, such as high
frequency components (Figure 2c)?
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Figure 2: Simultaneous spatial and frequency resolution of different transformations. ∆t,∆f
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1.3 Wavelet transformation

Let consider the following wavelet decomposition ∀f ∈ L2(Rd)

f(x) =
∑
s∈Z

∑
l∈Zd

〈f, ψs,l〉ψ∗s,l(x) (1)

The family of functions {ψs,l} is a wavelet frame (Def. 1.2), constructed by means of translations and dilations (Def.
1.1) of the mother wavelet function ψ.

ψs,l(x) = |det(A)|−s/2ψ(Asx− l) (2)

Each dilation, defined by the dilation matrix A, squeezes or stretches the mother wavelet, acting as a change of scale.
The translation operator moves and centers the location of the mother wavelet ψ. If the dilation matrix is diagonal
with the same dilation factor a in all dimensions, A = aId, then Equation 2 becomes:

ψs,l(x) = a−d·s/2ψ(asx− l) (3)

The mother wavelet function has to have finite energy ψ ∈ L2(Rd), i.e
∫∞
−∞ |ψ(x)|2dx <∞.

Definition 1.1 (Dilations and Translations). Given a function f ∈ R we define the dilation and translation operators[9]:

Dilation: Daf(x) := |a|−1/2f(x/a) for a ∈ R\{0}
Translation: Tbf(x) := f(x− b) for b ∈ R

Rd generalization:
Given f ∈ L2(Rd), f : Rd → R, x ∈ Rd, the dilation scalar a is replaced by a dilation matrix A = aId [10]. The
dilation matrix A is expansive, having all its eigenvalues |λi| > 1, so it is invertible. For the translation operator, the
scalar b is replaced for the vector b.

Dilation: DAf(x) := |det(A)|−1/2f(Ax) A expansive matrix
Translation: Tbf(x) := f(x− b) for b ∈ Rd

Definition 1.2 (Frame). A family of functions {φk}k∈Zd is a frame of L2(Rd) if and only if there exists two positive
constants A, B <∞ such that:

A‖f‖2 ≤
∑
k∈Zd

|〈φk, f〉|2 ≤ B‖f‖2,∀f ∈ L2(Rd) (4)

The frame is tight if A = B. If A = B = 1 we have a Parseval frame that satisfies the decomposition/reconstruction
formula:

f =
∑
k∈Zd

〈φk, f〉 · φk,∀f ∈ L2(Rd) (5)

which has the same form than the expansion using an orthonormal basis, however in the frame generalization, the
family φk may be redundant.

1.4 Wavelet Pyramid

A band-limited pyramid is created by applying, at each level, a low-pass filter h0 and downsampling by a scale factor
of two, see Figure 3a. Because the wavelet frames are tight, we can get perfect reconstruction applying the inverse
pyramid from Figure 3b. In Figure 3 we use two levels and two high pass subbands h1, h2. The results of this pyramid
are the detail coefficients ds,h, where s ∈ {1, . . . ,Levels}, and h ∈ {1, . . . ,HighPassSubBands}. Note that these
details are in the frequency domain, if the original image was given in spatial domain, an inverse Fourier transform for
each ds,h must be performed to get the wavelet coefficients in the spatial domain.
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f̂

h2 d̂1,2

h1 d̂1,1

h0 ↓D

h2 d̂2,2

h1 d̂2,1

h0 ↓D f̂Approx

(a) forward/analysis.

d̂1,1 h1 + f̂

d̂1,2 h2

d̂2,1 h1 + ↑U h0

d̂2,2 h2

f̂Approx ↑U h0

(b) inverse/reconstruction.

Figure 3: Forward 3a and Inverse wavelet 3b two-level pyramid with two high pass sub-bands.

Usually in the literature use only one high-pass sub-band, the wavelet filter bank consists then in one high pass filter
and one low pass filter (seeFigure 4). The adventages of the subbands is that they provide more frequency resolution
[4], at expenses of more computation time, and also they might generate spatial domain distortions due to multiple
sharp cutoffs. For phase detection (see the application in Figure 9), they are fundamental.

f̂

HP d̂1

LP ↓D
HP d̂2

LP ↓D f̂Approx

Figure 4: Forward wavelet pyramid with a classic two level filter bank and only one sub-band, HP is the high pass
filter, and LP low pass

1.5 Isotropic wavelets

These wavelets are non-separable in Cartesian coordinates, depending on ‖ω‖. Isotropic wavelets have the same
mother wavelet for each scale. All of the implemented wavelets fulfill the conditions of Prop 1, their shape differ in
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the spatial decay, and vanishing moments. Which one is better depend on the application, and developing new wavelets
is a research topic. We have implemented four, there are at least [6] two isotropic wavelets missing: Papadakis [11],
and Meyer [12]. The advantage of isotropic wavelets is that they are steerable, but in order to get directionality
features, the wavelets are coupled with other filters that gather directional information, such as the Riesz transform,
see section 2.

The present requirement that the mother wavelet is isotropic constraints the wavelet-design. The goal is to generate a
tight wavelet frame and have perfect reconstruction with the inverse pyramid.

Proposition 1. Conditions for the mother wavelet ψ to generate a tight wavelet frame [4, 6, 5]:
Let h(w) be a radial frequency profile such that:

1. (Band-limitedness): h(ω) = 0,∀ω > π.

2. (Riesz Partition of Unity):
∑
i∈Z

∣∣∣∣h(((AT
)−1)i

ω
)∣∣∣∣2 = 1.

If A = aId:
∑
i∈Z
∣∣h(aiω)

∣∣2 = 1. [4, 13]

3. (Vanishing Moments): dnh(ω)
dωn

∣∣∣
ω=0

= 0, for n = 0, . . . , N .

If the mother wavelet ψ is defined by ψ̂(ω) = h(‖ω‖), then it generates a tight wavelet frame in L2(Rd), where ψ̂ is
the ND Fourier transform of ψ.

Condition 2 guarantees that the tiling from all the scales fills the frequency domain, see Figure 5.

VOW, variance-optimal wavelets [7] :

h(ω) =



√
1

2
+

tan
(
κ(1 + 2 log2

2ω
π )
)

2 tan(κ)
, ω ∈ [

π

4
,
π

2
[√

1

2
−

tan
(
κ(1 + 2 log2

ω
π )
)

2 tan(κ)
, ω ∈ [

π

2
, π]

0, otherwise

where κ ∈ [0,
π

2
] is found to be 0.75

Held [4] :

h(ω) =


cos
(

2πqn(
ω

2π
)
)
, ω ∈]

π

4
,
π

2
]

sin
(

2πqn(
ω

4π
)
)
, ω ∈]

π

2
, π]

0, otherwise

where qn is a polynomial function of order n

Simoncelli [14, 2] :

h(ω) =

 cos

(
π

2
log2

2ω

π

)
, ω ∈]

π

4
,
π

2
]

0, otherwise

Shannon:

h(ω) =

{
1, ω ∈ [

π

2
, π]

0, otherwise
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(a) Vow. (b) Held.

(c) Simoncelli. (d) Shannon.

Figure 5: Tiling of the frequency domain by isotropic wavelets when the dilation factor is 2. All the wavelets fulfill
the conditions from Proposition 1. The mother wavelets are represented at i = 0.
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(a) Vow. (b) Held.

(c) Simoncelli. (d) Shannon.

Figure 6: Shape of SubBands when HighPassSubBands = 5, sub-bands increase the frequency resolution, but can
generate extra artifacts in the spatial domain due to the sharp frequency cut-offs.

2 Riesz Transform

The forward or analysis wavelet pyramid outputs a set of wavelet coefficients with information about each scale. A
steerable filter [4, 6, 2] can be applied to the output of the wavelet pyramid. This is the main purpose of the isotropy
of the mother wavelet, the steerable filter is used to select the orientation where the feature of interest is maximum.

There are mathematical constraints in the steerable filters that can be coupled with the wavelet pyramid. Read more:
[15, 6].

One of the transform that can be coupled to the pyramid is a Riesz transform R of order N = 1

Rf(x) =

R1f(x)
...

Rdf(x)

 F←−−−−→
F−1

R̂f̂(ω) = −j ω

‖ω‖
f̂(ω) (6)

where d is the image dimension and the number of components of the Riesz transform of order N = 1. j =
√
−1 and
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F ,F−1 are the forward and inverse Fourier Transform.

The Riesz transform is the generalization of the Hilbert transform for ND. The Hilbert transformH is used to generate
the analytic signal in 1D.

fa(x) = f(x) + jHf(x)

Hf(x) = (h ∗ f)(x)
F←−−−−→
F−1

Ĥf̂(ω) = −jsgn(ω)f̂(ω) = −j ω
|ω|

f̂(ω)
(7)

2.1 Monogenic Signal

There is no direct generalization of the analytical signal in ND, but we can generate a signal with similar properties,
called the Monogenic signal using the Riesz transform of order 1[16, 3]. The Monogenic signal is a set formed by the
original signal and the D-components of the first order Riesz transform.

fa = {f,Rx, ...,Rd} (8)

The amplitude A and the phase P at each location of the Monogenic signal are:

A(x0) =
√
f(x0)2 +AR(x0)2 (9)

where AR(x0) =
√∑N

i=1Ri(x0)2

P (x0) = atan2(AR(x0), A(x0)) (10)

The Monogenic signal can be used to perform local phase analysis for feature detection in ND.

2.2 Generalized Riesz Transform

The Riesz transform will map any frame of L2(Rd) into another one [4, 17]. This mapping property allows to couple
the Riesz transform of any order with the wavelet pyramid and if the wavelet function is isotropic, to get perfect
reconstruction when performing the inverse transform. The Riesz transform of order N generate a vector containing
smoothed directional Nth derivatives.

We will summarize the multiindex notation introduced in [6].
Consider n = (n1, . . . , nd) a d-dimensional multiindex vector, where the ni entries are non-negative integers. And
then define the following operators and operations:

1. Sum of components: |n| =
∑d
i=1 ni = N .

2. Factorial: n! = n1!n2! · · ·nd!

3. Exponentiation of a vector z = (zi, · · · , zd) ∈ Cd: zn = zn1
1 · · · z

nd

d

4. Partial derivative of a function f(x),x = (x1, . . . , xd) ∈ Rd: ∂nf(x) = ∂Nf(x)

∂x
n1
1 ···∂x

nd
d

Riesz transforms can be connected to the partial derivatives [6]:

Rn(−∆)
|n|
2 f(x) = (−1)|n|

√
|n|!
n!

∂nf(x)

where (−∆)γ is the fractional Laplace of order γ. From [6]: “Since the inverse of (−∆)
|n|
2 is an isotropic low-pass-

filtering operator, the net effect of the higher order Riesz transform is to extract smoothed version of the derivatives of
order N of the signal of interested.”

The number of components of R depends on the order of the Riesz transform N , and the dimension of the signal d:

M = p(N, d) =
(N + d− 1)!

(d− 1)!N !
(11)
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2.3 Generalized Steerable Framework

Simoncelli [2] coupled the multi-resolution analysis using wavelets with the steerable concept developed years before
[1]. A steerable framework can be used with polar separable functions. In this case, the radial part of the function has
to be calculated only once, and the polar part has only to be computed in those directions that constitute a basis of
the space. After this, the filter can be oriented, or steered to any direction, using a weighted linear combination of the
basis. This approach gives a directional analysis but keeping it computationally performant.

The steerable framework can be combined with wavelets when these are isotropic, which implies polar separability.
Simoncelli’s framework has been used in a lot of 2D applications. Freeman in its seminal work [1] wrote a generalized
version for any dimension, but it was lately, Chenouard and Unser [4, 6, 5] who used rotation matrices in 3D.

Definition 2.1. A function f is steerable in three dimensions if it can be expressed as:

f(Rx) =

M∑
m=1

km(R)gm(x) (12)

where x = (x1, x2, x3) is any 3D vector in Cartesian coordinates and R is any rotation matrix in three dimensions.
{gm}m=1...M is the set of primary functions, ie , a basis, and {km}m=1...M is a set of interpolation functions with
M <∞.

3 Implementation Details

3.1 Summary

Most of the filters in this module require input images in the dual space (frequency domain). If working with reg-
ular spatial-domain images, a itk::ForwardFFTImageFilter has to be applied. The decision is based on
performance and accuracy, avoiding expensive convolution operations and also multiple Fourier transforms.

Also, because we work in the frequency domain, we add a itk::FrequencyShrinkImageFilter and a
itk::FrequencyExpandImageFilter without any interpolation. The shrinker chops the high frequency pixels of the
image. And the expander adds zeros in the higher frequency bins. These filters require input images to be hermitian
–note that the output of a forward FFT on a real image is hermitian.
General FrequencyExpanders and FrequencyShrinkers that can be applied to non-hermitian complex images are
not implemented, although some preliminary work can be found in https://github.com/phcerdan/
ITKIsotropicWavelets/pull/31 based on [18].

3.2 Frequency Iterators

Every filter that uses the frequency value of a pixel can be templated with a itk::FrequencyImageRegionIterator.
This kind of iterators add the functions GetFrequencyBin(), GetFrequencyIndex() to a regular
itk::ImageRegionIterator, helping to abstract the complexity of the frequency layout into the itera-
tor. The layout determines the order and location of the frequency bins: zero frequency –DC component–, Nyquist,
low/high, or positive and negative frequencies. The layout changes depending on the parity of the image, the forward
Fourier transform algorithm chosen, or if the frequencies have been shifted ( itk::FFTShiftImageFilter).
Also these frequency iterators have data members: FrequencyOrigin, FrequencySpacing, holding metadata informa-
tion about the frequency domain.
ITK puts a strong emphasis in the ImageInformation or metadata on spatial domain images: Origin, Spacing,
Direction, Index. There are strong requirements when dealing with images with different metadata, for example,
multiplication between two images is only possible when they have compatible ImageInformation.
Although, when applying a itk::ForwardFFTImageFilter, the output image, which is now in the frequency
domain, still have metadata referring to the spatial domain, but nothing about the frequency origin, or spacing between
frequencies.

http://www.itk.org/Doxygen/html/classitk_1_1ForwardFFTImageFilter.html
https://github.com/phcerdan/ITKIsotropicWavelets/blob/master/include/itkFrequencyShrinkImageFilter.h
https://github.com/phcerdan/ITKIsotropicWavelets/blob/master/include/itkFrequencyExpandImageFilter.h
https://github.com/phcerdan/ITKIsotropicWavelets/pull/31
https://github.com/phcerdan/ITKIsotropicWavelets/pull/31
https://github.com/phcerdan/ITKIsotropicWavelets/blob/master/include/itkFrequencyImageRegionIterator.h
http://www.itk.org/Doxygen/html/classitk_1_1ImageRegionIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1FFTShiftImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ForwardFFTImageFilter.html
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There are three classes of FrequencyImageRegionIterator:

• FFTLayout: itk::FrequencyFFTLayoutImageRegionIterator
This iterator assumes that the frequency image has a “standard layout”. Different libraries, such as VNL, FFTW,
numpy.fft, generate this layout. Each image dimension is divided in two regions, holding positive and negative
frequencies.

- ZeroFrequency: The index holding the zero frequency value is at the origin [0, . . . , 0] (upper-left, corner).

- Nyquist: When size N is even, the positive Nyquist frequency is located in the middle, index N/2, and the
negative Nyquist is not stored. When N is odd, there is no Nyquist frequency, but most positive frequency
is at index (N − 1)/2, and most negative frequency is at index (N + 1)/2

The first index after the origin corresponds to the positive lowest frequency, say 0.1Hz. If this is the index 1, the
latest index N − 1 corresponds to the less negative frequency −0.1Hz

• ShiftedFFTLayout: itk::FrequencyShiftedFFTLayoutImageRegionIterator
The standard layout can be confusing to reason about, a common alternative is to shift the zero frequency bin to
the center of the image via itk::FFTShiftImageFilter.

• Regular: itk::FrequencyImageRegionIterator.
This iterator is for images that were taken experimentally in the frequency domain. GetFrequency() here is just a
wrap of TransformIndexToPhysicalPoint, and GetFrequencyBin is equal to GetIndex. It assumes that the image
metadata refers to the frequency domain, so FrequencyOrigin and FrequencySpacing are equal to the regular
Origin and Spacing. Iterators with GetFrequency() functions are needed for other classes in the module.

This abstraction will hopefully facilitate the implementation of further filters manipulating images in the frequency
domain.

3.3 Wavelet Transform

See subsection 1.4. The Wavelet Transform is templated over one of the IsotropicWavelet functions from subsec-
tion 1.5 chosen by the user through a itk::WaveletFrequencyFilterBankGenerator. The generator uses the function to
generate an image or a filter bank.

We can compute the maximum levels that an input accept with the ComputaMaxNumberOfLevels, right now
the implementation accepts needs inputs of the form sM , where s is the scale factor chosen for peform-
ing the multiresolution, and M is an integer. Even though this condition is restrictive, we can resize
any input using itk::FFTPadImageFilter, or if the user pipeline involves neighbor iterators, prefer
itk::FFTPadPositiveIndexImageFilter, implemented in this module, that avoids setting negative indices.

The itk::WaveletFrequencyForward generates a set of coefficients generated after applying the high pass filters hband
for each level, and an approximation (the result of applying the cascade of low pass filter h0).

The wavelet coefficients from the forward pyramid can be manipulated to perform further image analysis, for example
edge detection, denoise, phase analysis for feature detection, etc. These extra analysis should be independent of the
multiresolution framework.

After any manipulation, we can perform an inverse pyramid to reconstruct the image. Doing this require to plug in the
modified wavelet coefficients into itk::WaveletFrequencyInverse, if the wavelet coefficients are not modified by any
further analysis, we get exactly the same image as the origin image that we input to the forward pyramid.

3.4 Riesz Transform

We have a itk::RieszFrequencyFunction, implementing a Generalized Riesz Function [6] of any order N > 0. This
function receives an input ∈ Rd and outputs a vector of M Riesz Components, see Equation 11. To generate images
from this function, we use the itk::RieszFrequencyFilterBankGenerator. To rotate or steer the result of the Riesz
transform,use itk::RieszRotationMatrix. Please be aware the multiindex notation in these classes, see subsection 2.2

https://github.com/phcerdan/ITKIsotropicWavelets/blob/master/include/itkFrequencyFFTLayoutImageRegionIterator.h
https://github.com/phcerdan/ITKIsotropicWavelets/blob/master/include/itkFrequencyShiftedFFTLayoutImageRegionIterator.h
http://www.itk.org/Doxygen/html/classitk_1_1FFTShiftImageFilter.html
https://github.com/phcerdan/ITKIsotropicWavelets/blob/master/include/itkFrequencyImageRegionIterator.h
https://github.com/phcerdan/ITKIsotropicWavelets/blob/master/include/itkWaveletFrequencyFilterBankGenerator.h
http://www.itk.org/Doxygen/html/classitk_1_1FFTPadImageFilter.html
https://github.com/phcerdan/ITKIsotropicWavelets/blob/master/include/itkFFTPadPositiveIndexImageFilter.h
https://github.com/phcerdan/ITKIsotropicWavelets/blob/master/include/itkWaveletFrequencyForward.h
https://github.com/phcerdan/ITKIsotropicWavelets/blob/master/include/itkWaveletFrequencyInverse.h
https://github.com/phcerdan/ITKIsotropicWavelets/blob/master/include/itkRieszFrequencyFunction.h
https://github.com/phcerdan/ITKIsotropicWavelets/blob/master/include/itkRieszFrequencyFilterBankGenerator.h
https://github.com/phcerdan/ITKIsotropicWavelets/blob/master/include/itkRieszRotationMatrix.h


3.5 Structure Tensor 12

3.5 Structure Tensor

Given an array of inputs, itk::StructureTensor [6] computes the linear combination (or direction) of inputs that max-
imizes the response for each location in the image. Instead of only measuring the response at the pixel of interest, it
takes into account a local neighborhood. [6].

u(x0) = arg max
‖u‖=1

∫
Rd

g(x− x0) |Iu(x)|2

|Iu(x)|2 = uT · I(x) · (I(x))T · u

I is the required std::vector of input images. These images might be the output of a directional filter to an image (for
example, directional derivatives from an image) or the basis of a steerable filter, such as a RieszImageFilter. Instead of
just selecting the max response from the vector at every pixel, it uses the response over a local neighborhood, specified
using an isotropic Gaussian window g(x). This approach is more robust against noise. The user can control the radius
and sigma of this Gaussian kernel. Estimation of the local orientation this way results in an eigen-system with matrix:

[J(x0)]mn =
∑
x∈Zd

g(x− x0)Im[x]In[x]

where Im, In are input images, m,n ∈ 0, N − 1 and N is the total number of inputs. g is a Gaussian kernel.

The solution of the EigenSystem defined by J are the N EigenValues and EigenVectors. The output of StructureTensor
is a 2D Matrix of size (N,N+1), where the submatrix (N,N) are the EigenVectors, and the last column (N+1) are the
EigenValues. The orientation that maximizes the response: u is the EigenVector with largest EigenValue, which is is
the Nth column of the output matrix. We can use the calculated direction u to get a new image with max response
from the inputs at each pixel with the function ComputeProjectionImageWithLargestResponse(), or any other direction
from other eigen vectors with ComputeProjectionImage

Also we can compare eigen values to study the local coherency of each pixel:

χ(x0) =
λN (x0)−A(x0)

λN (x0) +A(x0)

where λN (x0) is the largest eigen value at pixel x0 , and A(x0) = 1
N−1

∑N−1
i=1 λi(x0) is the average of the other

eigen values.

3.6 Phase Analysis

This module also implements a base class itk::PhaseAnalysisImageFilter, and a specialization
itk::PhaseAnalysisSoftThresholdImageFilter that applies a soft-threshold technique to ignore low amplitude
values. The example application 10, uses a Monogenic signal to study the local phase of each wavelet coefficient to
perform multi-scale feature detection [16, 15].

4 A guided example:

I recommend the reader interested in extend this module to have a look to the tests for more usage options.

4.1 Input in the frequency domain.

The input for the itk::WaveletFrequencyForward has to be a complex image of a float/double pixel type. If the image
is not in the frequency domain already, apply a itk::ForwardFFTImageFilter to get it.

https://github.com/phcerdan/ITKIsotropicWavelets/blob/master/include/itkStructureTensor.h
https://github.com/phcerdan/ITKIsotropicWavelets/blob/master/include/itkPhaseAnalysisImageFilter.h
https://github.com/phcerdan/ITKIsotropicWavelets/blob/master/include/itkPhaseAnalysisSoftThresholdImageFilter.h
https://github.com/phcerdan/ITKIsotropicWavelets/blob/master/include/itkWaveletFrequencyForward.h
http://www.itk.org/Doxygen/html/classitk_1_1ForwardFFTImageFilter.html
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Some FFT algorithms only work for specific image sizes, for example, the size has to be a power of two. You can
apply a itk::FFTPadImageFilter to pad the image with zeros to reach the required size. However, this filter
sets some padded areas with negative indices, which can generate problems with neighbor iterators. As a work around,
this module introduces itk::FFTPadPositiveIndexImageFilter to avoid negative indices.

4.2 Choosing an isotropic wavelet

Choose a mother wavelet from the options available 1.5, and create a itk::WaveletFrequencyFilterBankGenerator with
the type of the mother wavelet as a template parameter.

typedef itk::HeldIsotropicWavelet< PixelType, ImageDimension>
WaveletFunctionType;

typedef itk::WaveletFrequencyFilterBankGenerator< ComplexImageType,
WaveletFunctionType >↪→

WaveletFilterBankType;

4.3 Forward / Analysis

Perform the wavelet transform based on input levels and high-frequency sub bands. ComputeMaxNumberOfLevels

is a static class function to calculate the max level. Currently, the size of input image has to be a multiple of two,
but the implementation has the member m_ScaleFactor for future extension and relaxation of this constraint. Use
FFTPadPositiveIndexImageFilter for padding the image with zeros for a valid size.

typedef itk::WaveletFrequencyForward< ComplexImageType, ComplexImageType,
WaveletFilterBankType >↪→

ForwardWaveletType;
typename ForwardWaveletType::Pointer forwardWavelet = ForwardWaveletType::New();
forwardWavelet->SetHighPassSubBands( highSubBands );
forwardWavelet->SetLevels(levels);
forwardWavelet->SetInput(fftFilter->GetOutput());

4.4 Inverse / Reconstruction

Before applying the inverse wavelet and get a reconstructed image, you want to modify the wavelet coefficients first.
The design of the framework has tried to decouple both pyramids, so we can focus in algorithms that deal only the
wavelet coefficients, on not with the details of the multiresolution framework.

Right now, only a phase analysis filter has been developed, but there are plenty of room for more, see section 5. Set
the same options used in the forward pyramid. And set the modified wavelet coefficients. If you don’t modify them
you will reconstruct the original image in the frequency domain.

Perform the wavelet forward with a suitable image:

#include "itkHeldIsotropicWavelet.h"
#include "itkVowIsotropicWavelet.h"
#include "itkSimoncelliIsotropicWavelet.h"
#include "itkShannonIsotropicWavelet.h"
#include "itkWaveletFrequencyFilterBankGenerator.h"
#include "itkWaveletFrequencyForward.h"
...

const unsigned int ImageDimension = 3;

http://www.itk.org/Doxygen/html/classitk_1_1FFTPadImageFilter.html
https://github.com/phcerdan/ITKIsotropicWavelets/blob/master/include/itkFFTPadPositiveIndexImageFilter.h
https://github.com/phcerdan/ITKIsotropicWavelets/blob/master/include/itkWaveletFrequencyFilterBankGenerator.h
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typedef double PixelType;
typedef std::complex< PixelType > ComplexPixelType;
typedef itk::Image< ComplexPixelType, ImageDimension > ComplexImageType;

// Set the WaveletFunctionType and the WaveletFilterBank
typedef itk::HeldIsotropicWavelet< PixelType, ImageDimension >

WaveletFunctionType;
typedef itk::WaveletFrequencyFilterBankGenerator< ComplexImageType,

WaveletFunctionType >↪→

WaveletFilterBankType;

// WaveletFrequencyForward
typedef itk::WaveletFrequencyForward< ComplexImageType, ComplexImageType,

WaveletFilterBankType >↪→

ForwardWaveletType;
typename ForwardWaveletType::Pointer forwardWavelet = ForwardWaveletType::New();
forwardWavelet->SetHighPassSubBands( highSubBands );
forwardWavelet->SetLevels(levels);
forwardWavelet->SetInput(fftFilter->GetOutput());
forwardWavelet->Update();

// Result of the wavelet decomposition.
typename ForwardWaveletType::OutputsType analysisWaveletCoeffs =
forwardWavelet->GetOutputs();

With the wavelet coefficients in hand (in the frequency domain), perform a decoupled filter, phase analysis, denoising,
feature detection, etc:

// Manipulate coefficients for your purposes:
// Denoise, phase analysis, etc...
typename ForwardWaveletType::OutputsType modifiedWaveletCoeffs;
for( unsigned int i = 0; i < forwardWavelet->GetNumberOfOutputs(); ++i )
{
...
aWaveletCoefficientFilter->SetInput( analysisWaveletCoeffs[i] );
aWaveletCoefficientFilter->Update();
modifiedWaveletCoeffs.push_back( aWaveletCoefficientFilter->GetOutput() );
}

And then plug back the modified coefficients to the inverse pyramid to get a reconstruction.

// Inverse Wavelet Transform
typedef itk::WaveletFrequencyInverse< ComplexImageType, ComplexImageType,

WaveletFilterBankType >↪→

InverseWaveletType;
typename InverseWaveletType::Pointer inverseWavelet = InverseWaveletType::New();
inverseWavelet->SetHighPassSubBands( highSubBands );
inverseWavelet->SetLevels( levels );
// inverseWavelet->SetInputs( forwardWavelet->GetOutputs() );
inverseWavelet->SetInputs( modifiedWaveletCoeffs );
bool useWaveletFilterBankPyramid = true;
inverseWavelet->SetUseWaveletFilterBankPyramid( useWaveletFilterBankPyramid );
inverseWavelet->SetWaveletFilterBankPyramid(

forwardWavelet->GetWaveletFilterBankPyramid() );↪→

inverseWavelet->Update();
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// The output of the inverse wavelet is in the frequency domain.
// Perform an InverseFFT to get a real image.
typename InverseFFTFilterType::Pointer inverseFFT = InverseFFTFilterType::New();
inverseFFT->SetInput( inverseWavelet->GetOutput() );

// Write or visualize the reconstructed output.
writer->SetInput(inverseFFT->GetOutput());

4.5 PhaseAnalyzer

Here we show the results of the test itkRieszWaveletPhaseAnalysisTest with a couple of optical illusions images, a
checker board and a Hermann grid.

(a) Original (b) Intensity thresholding

Figure 7: The original image looks like a regular check-board, but it isn’t. Pixels in the regions A and B have the same
intensity value (129), however our vision system performs local phase analysis that allows us to treat A,B regions as
different, keeping a global checker-board structure. 7b uses a non-linear map of intensity-color to enhance the irregular
checker board structure.

https://github.com/phcerdan/ITKIsotropicWavelets/blob/5c9f8db0718164675eecd6b134e66d4015394ff8/test/itkRieszWaveletPhaseAnalysisTest.cxx
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(a) Levels: 1 (b) Levels: 2 (c) Levels: 3

(d) Levels: 4 (e) Levels: 5 (f) Levels: 6

Figure 8: (Results of the phase analysis (with soft threshold) for different number of scales in the wavelet pyramid.
The input image is a checker-board of size 512x512).
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(a) Level: 6, HighPassSubBands: 1 (b) HighPassSubBands: 2 (c) HighPassSubBands: 3

(d) HighPassSubBands: 4 (e) HighPassSubBands: 5 (f) HighPassSubBands: 10

Figure 9: Using six scales (Level: 6), results for different number of high frequency sub-bands.
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(a) Hermann Grid (b) Levels: 8 (max), HighPassSubBands: 1

(c) Levels: 8 (max), HighPassSubBands: 10

Figure 10: The optical illusion generated by 10a the Hermann grid is generated by the local phase analysis of our
vision. 10b is the result of a phase analysis with the Monogenic signal for a wavelet pyramid of 8 levels and only one
high pass sub band. 10c is the same pyramid but with 10 high pass bands to increase the frequency resolution. Both
results use Simoncelli wavelet, but there is not much difference using Held, or Vow mother wavelets.

5 Conclusion and future work

This work provides ITK with a multiresolution analysis based on wavelet decomposition using isotropic and steerable
wavelets. Also it provides utilities to work in the dual or frequency domain. Frequency iterators, shrinkers and
expanders. It also provides a sub-sampler without interpolation, and a expander with zeros that work in any domain.

As an application, we showed in Figure 10 a local phase analyzer using the wavelet coefficients based on [4].

Future work would be easier to implement with the tools already developed. Some work will only require plumbing
operations together in a new filter, for example, creating a specific class for the Simoncelli Steerable Framework
[2], and the more general Steerable framework using Riesz transform [6], that will use the already implemented
itk::RieszRotationMatrix.

More applications that will require extra work but use the same wavelet backbone are:

• Denoising algorithms can be developed using the exposed wavelet coefficients, for example: Gaussian Scale
Mixture Models (GSM)[18], or SURE-LET [19].

• Feature detection without using template matching in an efficient way [20].

https://github.com/phcerdan/ITKIsotropicWavelets/blob/master/include/itkRieszRotationMatrix.h
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Implementation of these algorithms will provide state of the art solutions based on wavelets to a wider au-
dience, and I am happy to link them from the External Repository, https://github.com/phcerdan/
ITKIsotropicWavelets to have a reference of wavelet solutions for ITK.

Already implemented but not used in any application yet are: itk::RieszRotationMatrix, providing a steerable frame-
work for the General Riesz Transform [6]. And itk::StructureTensor, a local estimator of the direction –steer– with the
highest contribution [5].
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