
Efficient multithreading for manycore
processor: Multidimensional domain

decomposition using Intel
R©

TBB
Release 0.00

Etienne St-Onge1, Benoit Scherrer1, Simon K. Warfield 1

July 18, 2017

1Computational Radiology Lab (CRL), Boston Children’s Hospital, Harvard Medical School,

300 Longwood Ave, Boston MA 02115

Abstract

The Insight Toolkit (ITK) utilizes a generic design for image processing filters that allows many de-

velopers to rapidly implement new algorithms. While ITK filters benefit from a platform-independent

and versatile multithreading capability, the current implementation does not easily achieve high perfor-

mance. First, ITK relies on a static decomposition of the image into subsets of equal size which is highly

inefficient when the computational complexity varies between subsets (unbalanced workloads). Second,

the current domain decomposition is limited to subdivide the input domain along a single dimension

(typically the slice dimension in a 3-D volume), which causes a multithreading under-utilization when

the number of threads is larger than the size of this dimension when using massively parallel compute

systems. We previously presented a new itk::TBBImageToImageFilter [2] class that replaced the static

task decomposition by a dynamic task decomposition for improved workload balancing, in which the job

scheduling task was optimized using the Intel R© Threading Building Blocks (TBB) library [4]. In this

work, we propose a new multidimensional dynamic image decomposition approach that allows decom-

position over an arbitrary number of dimensions. This new generic multithreading capability, combined

with the TBB dynamic task scheduler, substantially improves multithreading performance when using

massively parallel processors.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3585]

Distributed under Creative Commons Attribution License

Contents

1 Introduction 2

2 Implementation 3

2.1 Original decomposition . 3

2.2 Proposed decomposition . 3

2.3 Dynamic Pooling . 4

2.3.1 TBB pooling system . 4

2.3.2 ThreadID incompatibility . 5

http://www.insight-journal.org
http://hdl.handle.net/10380/3585
http://creativecommons.org/licenses/by/3.0/us/

2

3 Application and evaluation 6

3.1 Background . 6

3.2 Tested algorithms . 6

3.3 Tested processors . 7

4 Results 7

4.1 Domain decomposition . 7

4.2 Acceleration on the Intel R© Xeon R© architecture (24 cores) 7

4.3 Acceleration on the Intel R© Xeon PhiTM massively parallel architecture (57-64 cores) 8

5 Discussion 9

6 Conclusion 9

7 Practical notes 10

1 Introduction

Many image processing algorithms show a high degree of data locality and can efficiently utilize multi-core

architectures to run computations simultaneously and reduce the computational duration time. While using

graphics processing units (GPUs) has been popular to accelerate various image processing algorithms in

the last decade, it requires re-writing algorithms using specialized programming languages (e.g., CUDA)

which is very often not possible in terms of resources and competences. In contrast, the emergence of

massively parallel x86 architectures such as the Intel R© Xeon PhiTM has enabled unprecedented opportunities

to parallelize conventional code (C/C++) and substantially reduce the computational time.

The current multithreading capability of ITK relies on a static decomposition of the image into subsets

of equal size which is highly inefficient when the processing time is not equal for all subsets. The un-

even computation among threads (unbalanced workloads) can be caused by local conditional computation,

masked regions or other background process, for example. In addition, the current partitioning system

(itk::ImageRegionSplitter) only decomposes the image domain along a single dimension which leads to a

multithreading under-utilization when the number of threads is larger than the reduced dimension. This

limitation is critical when using massively parallel processor such as Intel R© Xeon PhiTM Knight Landing

(64 cores / 256 hardware threads).

We previously proposed the TBBImageToImageFilter [2] abstract class with dynamic task decomposition

and scheduling, using the Intel R© Threading Building Blocks (TBB) library, to improve the performance with

unbalanced workloads (when processing time is not evenly distributed across regions). In this work, we pro-

pose a novel multidimensional image decomposition strategy that allows decomposition over an arbitrary

number of dimensions (e.g., slice-by-slice, line-by-line, voxel-by-voxel for a 3-D volume). It effectively

generates a larger number of tasks and significantly enhances the multithreading performance when using

massively parallel processors. We first describe the implementation of the current ITK multithreading par-

titioner and our proposed domain decomposition. Second, we detail the context in which we evaluated our

new class. In the results section, we compare this new multithreading approach with three different algo-

rithms on three platforms. Finally, we explain how the ITK multithreading can take advantage of using a

multidimensional domain decomposition with a thread and work pool system.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3585]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3585
http://creativecommons.org/licenses/by/3.0/us/

3

2 Implementation

In the section, we first present the current ITK multithreading implementation and limitations. Secondly,

we describe our proposed decomposition based on a multidimensional decomposition. Finally, we discuss

about the advantages of our new algorithm for manycore processors.

2.1 Original decomposition

The current ITK multithreading image filter is based on a static partitioning, subdivided equally to each

thread, along a single dimension. This algorithm separates the domain of the chosen dimension in equal

sized partition to feed each thread. By default, the last dimension is used for faster memory access (contigu-

ous memory readout). This decomposition is optimal when the workload is equal for each thread, because

it requires minimal thread management and interaction. Unfortunately, in most cases, the workload is not

equal (for example due to a variable complexity at each voxel) and some threads finish earlier than others

and stay idle. In addition, when the number of threads is larger than the size of the partitioned dimension,

the multithreading is limited to this dimension size.

2.2 Proposed decomposition

In this paper, we propose a method to avoid the current limitations of the current ITK multithreading imple-

mentation. Our first goal is to allow the domain decomposition over an arbitrary number of dimension. This

multidimensional domain decomposition is able to create a high or a low number of tasks depending on the

number of cores and to balance the workload on the available number of cores.

For example, the proposed multidimensional decomposition can partition the domain of a 2D image by lines

or pixels. A 3D volume can be decomposed by slices, lines or voxels. With this process of reducing the

dimensionality, we are able to generalize this splitting process to any number of dimensions. This is partic-

ularly helpful when the size of the last dimension is small compared to the number of thread available. Like

previously said, generating too many task might cause an overhead, but having too few cause a bottleneck.

We introduce a class variable m TBBNbReduceDimension used as a parameter that describes the subdi-

vision’s granularity. While the number of dimension reduction may be set manually (using the SetNbRe-

duceDimension() function), we also implemented an heuristic to automatically determine the default number

of dimensions that should be decomposed (GenerateNumberOfJobs()). Based on our result, we determined

and defined its default value in Section Results. This algorithm is based on the shape of the image, the size

of each dimension and the number of threads. With this feature, our multithreading filter is transparent to

the user and doesn’t require to manually set parameters. The Job per thread ratio has been determined with

our scalability benchmark results, the current ratio value is 15 and can easily be modified.

The filter computes the number of jobs (m TBBNumberOfJobs) based on this number and the image dimen-

sions sizes:

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3585]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3585
http://creativecommons.org/licenses/by/3.0/us/

2.3 Dynamic Pooling 4

template< typename TInputImage , typename TOutputImage >

2 void TBBImageToImageFi l ter< TInputImage , TOutputImage > :: Genera teNumberOfJobs ()

{
4 / / Get t h e s i z e o f t h e r e q u e s t e d r e g i o n

typename TOutputImage : : C o n s t P o i n t e r o u t p u t =

6 s t a t i c c a s t <TOutputImage ∗>(t h i s−>P r o c e s s O b j e c t : : Ge tOutpu t (0)) ;

typename TOutputImage : : S izeType o u t p u t S i z e = o u t p u t−>GetReques t edReg ion () . G e t S i z e () ;

8 c o n s t i n t imgDim = Output ImageDimens ion ;

c o n s t i n t nbReduceDim = GetNbReduceDimensions () ;

10
/ / G e n e r a t e t h e number o f j o b s

12 i f (nbReduceDim < 0)

{
14 / / H e u r i s t i c t o a u t o m a t i c a l l y d e t e r m i n e s m TBBNbReduceDimensions

m TBBNbReduceDimensions = 0 ;

16 m TBBNumberOfJobs = 1 ;

i n t c u r r e n t D i m = imgDim − 1 ;

18
/ / Minimum Number o f Jobs , based on t h e Number o f t h r e a d

20 unsigned i n t minNbJobs = JOB PER THREAD RATIO ∗ GetNumberOfThreads () ;

whi le (c u r r e n t D i m >= 0 && m TBBNumberOfJobs < minNbJobs)

22 {
++m TBBNbReduceDimensions ;

24 m TBBNumberOfJobs ∗= o u t p u t S i z e [c u r r e n t D i m] ;

−−c u r r e n t D i m ;

26 }
}

28 e l s e

{ / / I f manua l ly chosen m TBBNbReduceDimensions

30 a s s e r t (nbReduceDim <= imgDim) ;

32 m TBBNumberOfJobs = 1 ;

f o r (i n t i = imgDim − nbReduceDim ; i < imgDim ; ++ i)

34 {
m TBBNumberOfJobs ∗= o u t p u t S i z e [i] ;

36 }
}

38 }

2.3 Dynamic Pooling

2.3.1 TBB pooling system

We used the Threading Building Blocks (TBB) pooling system to handle the Threads and Jobs pool [4]. An

efficient job queue or pooling system improves multithreading performance when managing a large amount

of threads and jobs, more importantly when workloads is not equally distributed.

The dynamic TBB dispatch is not straightforward to use with a multidimensional approach, because it could

aggregate multiple regions and exceed the current dimension size. Therefore, we didn’t used the TBB

dynamic domain decomposition and generated each task with a static multidimensional decomposition.

We used the TBB scheduler and pooling system with the tbb::parallel for and tbb::blocked range. Using

the tbb::simple partitioner(), we disabled the dynamic decomposition by forcing the granularity to be equal

to one:

/ / Do t h e t a s k d e c o m p o s i t i o n u s i n g p a r a l l e l f o r

2 t b b : : p a r a l l e l f o r (

t b b : : b locked range<i n t >(0 , t h i s−>GetNumberOfJobs ()) ,

4 TBBFunctor<TInputImage , TOutputImage >(t h i s , o u t p u t S i z e) ,

t b b : : s i m p l e p a r t i t i o n e r ()) ;

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3585]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3585
http://creativecommons.org/licenses/by/3.0/us/

2.3 Dynamic Pooling 5

template< typename TInputImage , typename TOutputImage >

2 c l a s s TBBFunctor

{
4 p u b l i c :

t y p e d e f TBBFunctor S e l f ;

6 t y p e d e f TOutputImage OutputImageType ;

t y p e d e f typename OutputImageType : : C o n s t P o i n t e r O u t p u t I m a g e C o n s t P o i n t e r ;

8 t y p e d e f typename TOutputImage : : S izeType Outpu t ImageSizeType ;

t y p e d e f typename OutputImageType : : RegionType Output ImageRegionType ;

10
i t k S t a t i c C o n s t M a c r o (Inpu t ImageDimens ion , unsigned i n t , T Inpu t Image : : ImageDimension) ;

12 i t k S t a t i c C o n s t M a c r o (OutputImageDimension , unsigned i n t , TOutputImage : : ImageDimension) ;

14 t y p e d e f TBBImageToImageFi l ter<TInputImage , TOutputImage> T b b I m a g e F i l t e r T y p e ;

16 TBBFunctor (T b b I m a g e F i l t e r T y p e ∗ t b b F i l t e r , c o n s t Outpu t ImageSizeType& o u t p u t S i z e) :

m TBBFilter (t b b F i l t e r) , m OutputSize (o u t p u t S i z e) {}
18

void operator () (c o n s t t b b : : b locked range<i n t>& r) c o n s t

20 {
typename TOutputImage : : S izeType s i z e = m OutputSize ;

22 typename TOutputImage : : IndexType i n d e x ;

i n d e x . F i l l (0) ;

24
/ / Compute t h e c u r r e n t i n d e x from NbReduceDimensions

26 i f (m TBBFilter−>GetNbReduceDimensions () > 0)

{
28 unsigned i n t i = Output ImageDimens ion − (unsigned i n t) m TBBFilter−>GetNbReduceDimensions () ;

30 i n d e x [i] = r . b e g i n () ;

s i z e [i] = 1 ;

32 whi le (i < Output ImageDimens ion − 1)

{
34 i n d e x [i +1] = i n d e x [i] / m OutputSize [i] ;

i n d e x [i] = i n d e x [i] % m OutputSize [i] ;

36 s i z e [i +1] = 1 ;

i ++;

38 }
}

40
/ / C o n s t r u c t an i t k : : ImageRegion

42 Output ImageRegionType myRegion (index , s i z e) ;

44 / / Run t h e TBBGenerateData method (e q u i v a l e n t o f T h r e a d e d G e n e r a t e D a t a)

m TBBFilter−>TBBGenerateData (myRegion) ;

46 }

48 p r i v a t e :

T b b I m a g e F i l t e r T y p e ∗m TBBFilter ;

50 Outpu t ImageSizeType m OutputSize ;

} ;

2.3.2 ThreadID incompatibility

The original implementation of the ITK multi-threaded filter provided a ThreadID parameter (in Thread-

edGenerateData()) to identify which thread was running. Providing this parameter was possible because

of the static decomposition and static distribution of threads used by ITK, leading to a one-to-one thread-

to-partition correspondence. Some image filters used this property to combine the results of parallel cal-

culations achieved in the various threads into a single final result (process also known as reduction) in

AfterThreadedGenerateData().

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3585]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3585
http://creativecommons.org/licenses/by/3.0/us/

6

When using dynamic pooling, it must be understood that a same thread may be used to do computation on

various image sub-domains. Consequently, the ThreadID cannot represent the computation identifier any-

more. We therefore decided not to expose the ThreadID variable in our new TBBImageToImageFilter. This

was achieved by marking the original ThreadedGenerateData(const OutputImageRegionType&, ThreadId-

Type) as final and by defining a new TBBGenerateData(const OutputImageRegionType&) virtual function:

v i r t u a l vo id T h r e a d e d G e n e r a t e D a t a (c o n s t Output ImageRegionType &, ThreadIdType) ITK FINAL ;

2 v i r t u a l vo id TBBGenerateData (c o n s t Output ImageRegionType&) ;

3 Application and evaluation

We applied and tested our new filter in the analysis of diffusion-weighted magnetic resonance images, which

typically requires complex computations and especially benefits from parallel implementations.

3.1 Background

Magnetic resonance imaging (MRI) is a medical imaging technique used to reconstruct a 3D volume of the

anatomy. The contrast and intensity at each voxel (pixel in three dimensions), is based on the tissue prop-

erties and acquisition parameters. Diffusion-Weighted Imaging (DWI), or diffusion MRI (dMRI), is a MRI

technique which is sensitive to the water diffusion [1]. For each voxel, we measure the diffusion intensity

and decay along multiple directions. From the diffusion profile and anisotropy, we can infer a physical model

and reconstruct the underlying structure. The Diffusion Tensor Imaging (DTI) is a 3D Gaussian diffusion

model used to measure local characteristic from the dMRI acquisition, such as the Fractional Anisotropy

(FA) and Mean Diffusivity (MD) [3]. The DTI map can also be used to do tractography, a computational

reconstruction of the white matter architecture. Even though, this Gaussian approximation is not able to

reconstruct the full complexity of the underlying structure, the tensor model is still widely used for it ease

to use and fast MRI acquisition.

For the comparison, we used a standard dMRI acquisition. The volume resolution is 128x128x70 where

each voxel represent an isotropic 2cm3 with 85 diffusion directions. For more details about the acquisition,

refer to to CUSP90 described in the DCI model from Scherrer et al. [6].

3.2 Tested algorithms

In this work, we used the same diffusion MRI filters than Jaberzadeh et al. [2] to benchmark and compare

results. The goal of using several algorithms is to see in which environment the presented method is prefer-

able, and useful to outperform the standard decomposition and multithreading. This section only present the

performance characteristics and multithreading potential of each test.

• The Rician Noise Correction is a simple dMRI filter with balanced workloads and fast computation.

• The Tensor Estimation is linear least-squares fitting. This filter compute the estimation at each voxel

inside the region of interest. This test will be used as a non-computationally intensive with unbalanced

workloads, because of the mask.

• The constrained Non-Linear Tensor Estimation reconstruct the diffusion tensor using a optimization

approach. This method also have an unbalanced workloads, but with a more intensive computation.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3585]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3585
http://creativecommons.org/licenses/by/3.0/us/

3.3 Tested processors 7

3.3 Tested processors

For the results (benchmarks and scalability), three different processors were used: a high end computer and

two manycores processors. The high end processor we used is the Intel R© Xeon R© E5-2697 v2 with 24 cores

at 2.70GHz. We also benchmark two Intel R© Xeon PhiTM, from the Many Integrated Core (MIC) family:

the Knights Corner (KNC #3120), a 1.10GHz co-processor with 57 cores (228 hardware threads), and the

Knights Landing (KNL #7210), a 1.30GHz host processor with 64 cores (256 hardware threads).

4 Results

4.1 Domain decomposition

The image domain decomposition with the original ITK filter (itk::ImageRegionSplitterSlowDimension),

over our 128x128x70 test data, generate a maximum of 70 partitions. This could be extended to 128 by

using another dimension to partition the image, but the memory access might be slower because of the

non-contiguous access.

Our multidimensional approach with a single dimension reduction will create 70 jobs, the same as the

original ITK filter. It can also decompose the two last dimensions into 8960 jobs (128*70) or reduce it

by three and generate a total of 1146880 jobs (128*128*70). We compared our previous dynamic TBB

decomposition [2] with our new multidimensional static approach, where both of them use the integrated

TBB tasks scheduler.

4.2 Acceleration on the Intel R© Xeon R© architecture (24 cores)

Figure 1 presents the multithreading scaling performance on the Intel R© Xeon R© E5-2697 v2 (24 cores at

2.70GHz) for each method. It shows results for the current ITK version (itk), our previous dynamic approach

(tbb) and our new multidimensional decomposition (tbb nd). We included the three possible multidimen-

sional partitioning of the volume: in slices (tbb nd 1), in lines (tbb nd 2) and in voxels (tbb nd 3). We

compared these methods, using previously presented test programs, with balanced or unbalanced workloads

and intensive computation or not.

Rician Noise Correction filter (balanced workloads, simple computation, Figure 1-a): most multithreading

strategies perform the same. The voxel-wise decomposition (tbb nd 3) performs worst due to the large

amount of jobs created for this non-intensive computation.

Linear Tensor Reconstruction filter (unbalanced workloads, simple computation, Figure 1-b): all ap-

proaches with the last dimension decomposition (itk, tbb, tbb nd 1) have the same acceleration shape.

Because workloads are unbalanced, the lines decomposition (tbb nd 2) outperforms the other strategies. In

contrast, the voxel-wise decomposition (tbb nd 3) leads to a large number of jobs that causes substantial

overhead and, ultimately, a slower computation.

Non-Linear Tensor Estimation filter (unbalanced workloads, complex computation, Figure 1-c): the pro-

posed method (tbb nd) and previous dynamic approach (tbb) have better scaling than the static decomposi-

tion (itk). The lines decomposition (tbb nd 2) is 1.5 time faster at 24 threads.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3585]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3585
http://creativecommons.org/licenses/by/3.0/us/

4.3 Acceleration on the Intel R© Xeon PhiTM massively parallel architecture (57-64 cores) 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

5

10

15

20

25

number of threads

ac
ce

le
ra

ti
o
n

Rician Noise Correction Filter -Xeon

(balanced workloads)

perfect scaling

itk

tbb

tbbnd 1

tbbnd 2

tbbnd 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

5

10

15

20

25

number of threads

ac
ce

le
ra

ti
o
n

Tensor Reconstruction Filter -Xeon

(unbalanced workloads)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

5

10

15

20

25

number of threads

ac
ce

le
ra

ti
o
n

Non-Linear Tensor Estimation Filter -Xeon

(heavy workloads)

Figure 1: Multithreading scaling for the three test algorithm with the Xeon processor (24 cores). Com-

paring the current ITK multithreading (itk), our previous tbb dynamic scheduler [2] (tbb) and our proposed

multidimensional decomposition (tbb nd).

4.3 Acceleration on the Intel R© Xeon PhiTM massively parallel architecture (57-64 cores)

Figure 2 shows that both the current ITK and our previous implementation of TBBImageToImageFilter

stop scaling above 70 threads. This is because the provided input image has 70 slices, and illustrates how

the unidimensional partitioning limits the multithreading scaling capability when using massively parallel

architectures. In contrast, our new decomposition strategy is not limited when using more than one reduced

dimension (lines or voxels).

For KNC and KNL, using tbb nd 2 (line decomposition) is ultimately 2x faster than the current ITK version

when using all available threads. We observe in Figure 2-b that the KNL platform (but not KNC) results in

thread throttling when using both a large number of threads and a large number of jobs (tbb nd 3). This

phenomenon happens when the task scheduler overhead stops being negligible, compared to the processing

time of each task. We hypothesize that we don’t observe this phenomenon in Figure 2-a because of the

slower processing speed of KNC.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3585]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3585
http://creativecommons.org/licenses/by/3.0/us/

9

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

1
0

9

1
1

8

1
2

7

1
3

6

1
4

5

1
5

4

1
6

3

1
7

2

1
8

1

1
9

0

1
9

9

2
0

8

2
1

7

2
2

6

0

50

100

150

200

250

number of threads

a
c
c
e

le
r
a

ti
o

n
Non-Linear Tensor Estimation Filter - KNC

1
1

0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

1
0

9

1
1

8

1
2

7

1
3

6

1
4

5

1
5

4

1
6

3

1
7

2

1
8

1

1
9

0

1
9

9

2
0

8

2
1

7

2
2

6

2
3

5

2
4

4

2
5

3

0

50

100

150

200

250

300

number of threads

a
c
c
e

le
r
a

ti
o

n

Non-Linear Tensor Estimation Filter - KNL

perfect scaling

itk

tbb

tbbnd 1

tbbnd 2

tbbnd 3

Figure 2: Scaling of the Non-Linear Tensor Estimation (heavy workloads) on manycore processors (KNC

and KNL) with the current ITK multithreading (itk), our previous tbb dynamic scheduler [2] (tbb) and our

proposed multidimensional decomposition (tbb nd).

5 Discussion

From the result in Figure 1-a, we see that the current ITK static decomposition perform well in a balanced

workloads situation and when the images are large enough compared to the number of threads. However, in

unbalanced workloads application (Figure 1-b,c) or with highly parallel architectures (Figure 2-a,b), using

a dynamic pooling system with a larger number of jobs (tbb nd 2) allows substantial increase in multi-

threading performance and scaling. This is true only to certain granularity: generating an excessive amount

of partition, i.e. using the voxel decomposition (tbb nd 3), can cause an overhead and decrease the filter

overall performance (Figure 1-a, Figure 2-b).

From the multithreading scaling result with unbalanced workloads applications, we determined that the job

per thread ratio should be around 15 (Figure 1, Figure 2). In unbalanced workloads test (Figure 1-b,c), when

using more than 5 threads, the multidimensional approach with line decomposition (tbb nd 2) outperform

other algorithms. The ratio value should be high enough to utilize lines partition after a certain amount of

threads, but shouldn’t utilize voxel partition (tbb nd 3) without a really large number of threads. With our

dMRI image last dimension size equal to 70, the heuristic use slice decomposition before 5 threads and then

line decomposition up to 598 threads.

6 Conclusion

The ITK multithreading implementation can be improved by including a multidimensional domain decom-

position utilizing a thread and work pool system. This new strategy not only improves the performance

when there is more thread than the size of the last dimension, but also when the image processing algorithm

has unbalanced workloads. The proposed decomposition heuristic for the multidimensional partitioning,

based on the image size and number of threads, enables the filter to be transparent for the user.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3585]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3585
http://creativecommons.org/licenses/by/3.0/us/

10

7 Practical notes

Alongside this paper, a package containing the source code, build instructions and a sample dataset is pro-

vided. We also included the CMake Toolchain file for the Knights Corner cross-compilation. Filtered

anatomical and diffusion images, can be visualized with Mister I [5] or any software displaying diffusion

tensors supporting NHDR or NRRD extensions.

An ITK remote module ITKTBBImageToImageFilter with improved code readability and improved consis-

tency with the ITK coding guidelines is also available at:

https://github.com/InsightSoftwareConsortium/ITKTBBImageToImageFilter.

References

[1] Maxime Descoteaux and Cyril Poupon. Diffusion-weighted mri. Comprehensive Biomedical Physics,

3(6):81–97, 2012. 3.1

[2] Amir Jaberzadeh, Benoit Scherrer, and Simon Warfield. A new implementation of

itk::imagetoimagefilter for efficient parallelization of image processing algorithms using intel

threading building blocks. 07 2016. (document), 1, 3.2, 4.1, 1, 2

[3] Denis Le Bihan, Jean-François Mangin, Cyril Poupon, Chris A Clark, Sabina Pappata, Nicolas Molko,

and Hughes Chabriat. Diffusion tensor imaging: concepts and applications. Journal of magnetic reso-

nance imaging, 13(4):534–546, 2001. 3.1

[4] James Reinders. Intel threading building blocks: outfitting C++ for multi-core processor parallelism. ”

O’Reilly Media, Inc.”, 2007. (document), 2.3.1

[5] Benoit Scherrer. http://www.benoitscherrer.com/misteri. 7

[6] Benoit Scherrer, Armin Schwartzman, Maxime Taquet, Sanjay P Prabhu, Mustafa Sahin, Alireza

Akhondi-Asl, and Simon K Warfield. Characterizing the distribution of anisotropic micro-structural

environments with diffusion-weighted imaging (diamond). In International Conference on Medical

Image Computing and Computer-Assisted Intervention, pages 518–526. Springer, 2013. 3.1

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3585]

Distributed under Creative Commons Attribution License

https://github.com/InsightSoftwareConsortium/ITKTBBImageToImageFilter
http://www.insight-journal.org
http://hdl.handle.net/10380/3585
http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	Implementation
	Original decomposition
	Proposed decomposition
	Dynamic Pooling
	TBB pooling system
	ThreadID incompatibility

	Application and evaluation
	Background
	Tested algorithms
	Tested processors

	Results
	Domain decomposition
	Acceleration on the Intel® Xeon® architecture (24 cores)
	Acceleration on the Intel® Xeon PhiTM massively parallel architecture (57-64 cores)

	Discussion
	Conclusion
	Practical notes

