
Computing Bone Morphometric Feature Maps
from 3-Dimensional Images

Release 2.0.0

Jean-Baptiste Vimort1, Matthew McCormick1 and Beatriz Paniagua1

November 2, 2017

1Kitware Inc., Carrboro, NC

Abstract

This document describes a new remote module implemented for the Insight Toolkit (ITK, www.itk.org),

itkBoneMorphometry. This module contains bone analysis filters that compute features from N-

dimensional images that represent the internal architecture of bone. The computation of the bone

morphometry features in this module is based on well known methods. The two filters contained in

this module are itkBoneMorphometryFeaturesFilter. which computes a set of features that describe the

whole input image in the form of a feature vector, and itkBoneMorphometryFeaturesImageFilter, which

computes an N-D feature map that locally describes the input image (i.e. for every voxel). itkBoneMor-

phometryFeaturesImageFilter can be configured based in the locality of the desired morphometry fea-

tures by specifying the neighborhood size. This paper is accompanied by the source code, the input data,

the choice of parameters and the output data that we have used for validating the algorithms described.

This adheres to the fundamental principle that scientific publications must facilitate reproducibility of

the reported results.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3588]

Distributed under Creative Commons Attribution License

www.itk.org
http://www.insight-journal.org
http://hdl.handle.net/10380/3588
http://creativecommons.org/licenses/by/3.0/us/

Contents 2

Contents

1 Introduction 3

2 Bone Morphometry Features Available 4

3 Filter Usage 6

3.1 itk::BoneMorphometryFeaturesFilter . 6

3.2 itk::BoneMorphometryFeaturesImageFilter . 6

3.3 Recommendations . 7

3.4 Python Packages . 7

4 Practical examples 8

4.1 C++ . 8

itk::BoneMorphometryFeaturesFilter . 8

itk::BoneMorphometryFeaturesImageFilter . 9

4.2 Python . 10

itk.BoneMorphometryFeaturesFilter . 10

itk.BoneMorphometryFeaturesImageFilter . 11

5 Results 12

6 Conclusion 14

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3588]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3588
http://creativecommons.org/licenses/by/3.0/us/

3

1 Introduction

Morphometry (or morphometrics) refers to the quantitative analysis of form and it is done by analyzing

different aspects of an object such as the size or the shape of the studied object. The first bone morphometry

analyses were performed in the 60s, thanks to a method called histomorphometry. Histomorphometry con-

sists of slicing piece of ex-vivo bone and performing a succession of 2D morphometry analysis on the tissue

slices obtained. Therefore, this technique was limited by the destructive nature of the procedure, which did

not allow clinical application. Additionally, due to the 2D nature of the images, certain types of features

such as bone volume density (BV/TV) and bone surface density (BS/BV)[2] could be computed, but compu-

tation of other types of 3D features, such as trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), and

trabecular number (Tb.N), were not possible[3].

In the past decade, improvements in 3D medical imaging technologies in terms of contrast, resolution and

reconstruction have enabled the study bone structure in-vivo. Combined with the ever increasing computa-

tional power available, the development of tools to compute quantitative biomarkers of bone morphometry

is now possible. Several free packages already offer a way to compute 3D bone morphometry features such

as Microview or BoneJ. However, none of those tools contain bone morphometry filters that are able to

compute bone morphometry N-dimensional feature maps.

We have created a new remote module containing two bone morphometry filters for ITK:

the first one is able to compute a set of feature characterizing the whole input image

(itk::BoneMorphometryFeaturesFilter) and a second one is optimized for the computa-

tion of feature maps characterizing the input image locally for every one of its voxels

(itk::BoneMorphometryFeaturesImageFilter).

Significant computational power is required to create the feature maps described, so the

itk::BoneMorphometryFeaturesImageFilter algorithms have been optimized thanks to ITK’s multi-

threading, itk::NeighborhoodIterator, and itk::ImageBoundaryFacesCalculator. These im-

provements, only possible thanks to the internal ITK infrastructure, allow fast and efficient feature maps

computation.

All the features available in itkBoneMorphometry are presented in Section 2. Section 3 describes the filters

specifications (templates, inputs, parameters) of each filter and how to customize the use of these filters. Sec-

tion 4 contain examples of code using itkBoneMorphometry filters in Python and C++. Finally, Sections 5

and 6 present several scenarios, results and conclusions obtained with itkBoneMorphometry.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3588]

Distributed under Creative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageBoundaryFacesCalculator.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3588
http://creativecommons.org/licenses/by/3.0/us/

4

2 Bone Morphometry Features Available

The computation of the bone morphometry features is based on the following parameters:

• The total number of voxels in the studied volume NTotal : It represents the total number of voxels

contained in the mask. If no NTotal is specified, the total number voxels in the whole image will be

considered by default. In the particular case of the figure 1 as no mask is specified and the image is a

square of 25 by 25 voxels NTotal = 625

• The number of voxels that are part of the bone NBone: It represents the number of pixels with an

intensity higher than the specified threshold. Figure 1 shows the pixels that are part of the bone

highlighted in brown and NBone = 292

• The number of voxels that are part of the bone/non-bone boundary NBoundary: This number represents

the separation for that can be separated for each direction NBoundaryX , NBoundaryY and NBoundaryZ: This

parameter represents the number of boundary bone/non-bone voxels, it is important to notice that a

single voxel can be part of the NBoundary several times. In the figure 1 example NBoundary = 218

Figure 1: NTotal (left), NBone (center) and NBoundary (right)

The following features can be computed thanks to the itkBoneMorphometry filters:

Bone volume density or BvTv (which stands for stands for Bone Volume Bv over Total Volume Tv ratio)

indicates the fraction of a given volume of interest (VOI, i.e. the Total Volume Tv) that is occupied by

mineralized bone (Bone Volume Bv).

BvT v =
NBone

NTotal

(1)

Trabecular number (TbN) is taken as the inverse of the mean distance between the mid-axes of the structure

to be examined.

T bN = (T bNx +TbNy +T bNz)/3 (2)

with

T bNx/y/z =
NBoundaryx/y/z

NTotal ∗ ImSpacingx/y/z

(3)

Bone surface density or BsBv (which stands for stands for Bone Surface Bs over Bone Volume Bv) gives

an indication on how many bone lining cells cover a given volume of bone (Bv).

BsBv = 2
T bN

BsBv
(4)

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3588]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3588
http://creativecommons.org/licenses/by/3.0/us/

5

Trabecular thickness (TbTh) is determined by filling maximal spheres into the structure using a distance

transform. Then the average thickness of all maximal spheres is calculated to give an estimate of mean

TbTh.

T bT h =
BsBv

TbN
(5)

Trabecular separation (TbSp) is calculated in the same way than TbTh, but this time the voxels represent-

ing non-bone parts are filled with maximal spheres. TbSp can thus be expressed as the average thickness of

the marrow cavities.

T bSp =
1−BsBv

T bN
(6)

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3588]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3588
http://creativecommons.org/licenses/by/3.0/us/

6

3 Filter Usage

3.1 itk::BoneMorphometryFeaturesFilter

For a given N-dimensional input image, itk::BoneMorphometryFeaturesFilter will provide a set of

5 bone morphometry features summarizing the whole image. This filter behaves as a filter with an input

image and output value. Thus it can be inserted in a pipeline with other filters and the metrics will only be

recomputed if a downstream filter changes.

Template Parameters (if used in C++):

• The input image type: it must be a ND image of any type.

• The mask image type: it also must be a ND image of any type (will be unsigned char by default)

Inputs and parameters:

• An input image

• A mask defining the region over which features will be calculated. (Optional)

• A Threshold that will be used to determine if each voxel is part of the bone or not. Every voxel with

an intensity higher than the threshold will be considered as part of the bone.

3.2 itk::BoneMorphometryFeaturesImageFilter

For each voxel of the input image, the itkBoneMorphometryFeaturesImageFilter will compute a 5-D vector

containing a local bone morphometry feature for that voxel. The output of the filter is a N-D image where

each pixel will contain a vector of 5 scalars. Each feature map can be extracted from the output image

afterward thanks to itk::NthElementImageAdaptor. By default the morphometry features are computed

for each spatial direction and averaged afterward.

Template Parameters:

• The input image type: must be a N-D image of any type.

• The output image type: must be a N-D image where the pixel type must be a vector of floating points

or an ImageVector.

• The mask image type: must be a N-D image of any type (will be unsigned char by default)

Inputs and parameters:

• An input image

• A mask defining the region over which features will be calculated. (Optional)

• A threshold that will be used to determine if each voxel is part of the bone or not. Every voxel with

an intensity higher than the threshold will be considered as part of the bone.

• The size of the neighborhood radius. (Optional, defaults to 2.)

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3588]

Distributed under Creative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1NthElementImageAdaptor.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3588
http://creativecommons.org/licenses/by/3.0/us/

3.3 Recommendations 7

3.3 Recommendations

To obtain significant results, it is important to carefully choose the parameters depending on the input data

and the significant information that need to be revealed by the output. The radius of the neighborhood should

be chosen depending on the scale of the trabecular spaces and resolution of the input data and the size of

the anomaly/object that needs to be detected in the input image. The threshold will need to be specifically

adapted to every input data; it is possible to use a segmentation of the bone as an input by setting the

threshold to 1.

The usage of a Region Of Interest (ROI) mask is strongly advised, it will reduce the computation time by

avoiding computing features for the noisy/background parts of the image.

In addition to the settings, particular attention should be payed to the input data. Please consider cropping

the input so it contains only areas that will be interesting for the analysis. This will both help improve the

computation time, and avoid memory problems due to large output data (consider that the output data is 8

or 10 times bigger than the input data).

The memory problems arise from output data that is too large, separate the output feature map image into

several scalar feature images with the ITK class itk::VectorIndexSelectionCastImageFilter.

3.4 Python Packages

Python wheels allow easily installation of itkBoneMorphometry filters and all their dependencies to use with

any other Python tools. They have been generated for the three main operating systems (Mac, Linux and

Windows) and three versions of Python (2.7, 3.5 and 3.6). To install the Python package, use the following

command from your shell:

python -m pip install itk-bonemorphometry

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3588]

Distributed under Creative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1VectorIndexSelectionCastImageFilter.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3588
http://creativecommons.org/licenses/by/3.0/us/

8

4 Practical examples

4.1 C++

itk::BoneMorphometryFeaturesFilter

#include "itkBoneMorphometryFeaturesFilter.h"

#include "itkMath.h"

#include "itkImage.h"

#include "itkVector.h"

#include "itkImageFileReader.h"

#include "itkTestingMacros.h"

int BoneMorphometryFeaturesFilterInstantiationTest(int argc, char *argv[])

{

if(argc < 3)

{

std::cerr << "Missing parameters." << std::endl;

std::cerr << "Usage: " << argv[0]

<< " inputImageFile"

<< " maskImageFile"

<< " threshold"

<< std::endl;

return EXIT_FAILURE;

}

const unsigned int ImageDimension = 3;

// Declare types

typedef float InputPixelType;

typedef itk::Image< InputPixelType, ImageDimension > InputImageType;

typedef itk::ImageFileReader< InputImageType > ReaderType;

// Create and set up a reader

ReaderType::Pointer reader = ReaderType::New();

reader->SetFileName(argv[1]);

// Create and set up a maskReader

ReaderType::Pointer maskReader = ReaderType::New();

maskReader->SetFileName(argv[2]);

// Create the filter

typedef itk::BoneMorphometryFeaturesFilter<InputImageType> FilterType;

FilterType::Pointer filter = FilterType::New();

filter->SetInput(reader->GetOutput());

filter->SetMaskImage(maskReader->GetOutput());

filter->SetThreshold(std::atoi(ragv[3]));

filter->Update();

filter->GetBVTV();

filter->GetTbN();

filter->GetTbTh();

filter->GetTbSp();

filter->GetBSBV();

return EXIT_SUCCESS;

}

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3588]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3588
http://creativecommons.org/licenses/by/3.0/us/

4.1 C++ 9

itk::BoneMorphometryFeaturesImageFilter

#include "itkBoneMorphometryFeaturesImageFilter.h"

#include "itkMath.h"

#include "itkImage.h"

#include "itkVector.h"

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

#include "itkTestingMacros.h"

int BoneMorphometryFeaturesImageFilterInstantiationTest(int argc, char *argv[])

{

if(argc < 5)

{

std::cerr << "Missing parameters." << std::endl;

std::cerr << "Usage: " << argv[0]

<< " inputImageFile"

<< " maskImageFile"

<< " outputImageFile"

<< " threshold"

<< " neighborhoodRadius"

<< std::endl;

return EXIT_FAILURE;

}

const unsigned int ImageDimension = 3;

const unsigned int VectorComponentDimension = 5;

// Declare types

typedef float InputPixelType;

typedef itk::Image< InputPixelType, ImageDimension > InputImageType;

typedef itk::ImageFileReader< InputImageType > ReaderType;

typedef itk::Neighborhood<typename InputImageType::PixelType,

InputImageType::ImageDimension> NeighborhoodType;

typedef float OutputPixelComponentType;

typedef itk::Vector< OutputPixelComponentType, VectorComponentDimension >

OutputPixelType;

typedef itk::Image< OutputPixelType, ImageDimension > OutputImageType;

// Create and set up a reader

ReaderType::Pointer reader = ReaderType::New();

reader->SetFileName(argv[1]);

// Create and set up a maskReader

ReaderType::Pointer maskReader = ReaderType::New();

maskReader->SetFileName(argv[2]);

// Create the filter

typedef itk::BoneMorphometryFeaturesImageFilter<InputImageType, OutputImageType, InputImageType> FilterType;

FilterType::Pointer filter = FilterType::New();

filter->SetInput(reader->GetOutput());

filter->SetMaskImage(maskReader->GetOutput());

filter->SetThreshold(std::atoi(ragv[4]));

NeighborhoodType neighborhood;

neighborhood.SetRadius(std::atoi(argv[5]));

filter->SetNeighborhoodRadius(neighborhood.GetRadius());

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3588]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3588
http://creativecommons.org/licenses/by/3.0/us/

4.2 Python 10

filter->Update();

// Create and set up a writer

typedef itk::ImageFileWriter< OutputImageType > WriterType;

WriterType::Pointer writer = WriterType::New();

writer->SetFileName(argv[3]);

writer->SetInput(filter->GetOutput());

writer->Update();

return EXIT_SUCCESS;

}

4.2 Python

itk.BoneMorphometryFeaturesFilter

import itk, sys

if len(sys.argv) != 4:

print("Usage: " + sys.argv[0] + " <inputImagePath> "

" <maskImagePath> "

" <threshold> ")

sys.exit(1)

Dimension = 3

#Input scan reader

InputPixelType = itk.ctype(’signed short’)

InputImageType = itk.Image[InputPixelType, Dimension]

imReader = itk.ImageFileReader[InputImageType].New()

imReader.SetFileName(sys.argv[1])

#Input mask reader

MaskPixelType = itk.ctype(’unsigned char’)

MaskImageType = itk.Image[MaskPixelType, Dimension]

maskReader = itk.ImageFileReader[MaskImageType].New()

maskReader.SetFileName(sys.argv[2])

im = imReader.GetOutput()

mask = maskReader.GetOutput()

filtr = itk.BoneMorphometryFeaturesFilter.New(im)

filtr.SetMaskImage(mask)

filtr.SetThreshold(int(sys.argv[3]))

filtr.Update()

print filtr.GetBVTV()

print filtr.GetTbN()

print filtr.GetTbTh()

print filtr.GetTbSp()

print filtr.GetBSBV()

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3588]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3588
http://creativecommons.org/licenses/by/3.0/us/

4.2 Python 11

itk.BoneMorphometryFeaturesImageFilter

import itk, sys

if len(sys.argv) != 6:

print("Usage: " + sys.argv[0] + " <inputImagePath> "

" <maskImagePath> "

" <outputImagePath> "

" <threshold> "

" <neigborhoodRadius> ")

sys.exit(1)

Dimension = 3

#Input scan reader

InputPixelType = itk.ctype(’signed short’)

InputImageType = itk.Image[InputPixelType, Dimension]

imReader = itk.ImageFileReader[InputImageType].New()

imReader.SetFileName(sys.argv[1])

#Input mask reader

MaskPixelType = itk.ctype(’unsigned char’)

MaskImageType = itk.Image[MaskPixelType, Dimension]

maskReader = itk.ImageFileReader[MaskImageType].New()

maskReader.SetFileName(sys.argv[2]t

im = imReader.GetOutput()

mask = maskReader.GetOutput()

filtr = itk.BoneMorphometryFeaturesImageFilter.New(im)

filtr.SetMaskImage(mask)

filtr.SetThreshold(int(sys.argv[4]))

filtr.SetNeighborhoodRadius([int(sys.argv[5]),int(sys.argv[5]),int(sys.argv[5])])

result = filtr.GetOutput()

itk.imwrite(result, sys.argv[3])

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3588]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3588
http://creativecommons.org/licenses/by/3.0/us/

12

5 Results

We presented concrete use case scenarios of the itkBoneMorphometry’s filters in this section. We used

itkBoneMorphometry to characterize subchondral bone structure in temporomandibular joint (TMJ) Os-

teoarthritis (OA). To date, there is no single sign, symptom, or test that can clearly diagnose early stages of

TMJ OA. However, it has been observed that changes in the subchondral bone occur in very early stages of

this disease involving structural changes in the subchondral bone (i.e. bone marrow).

The different tools presented in this document can aid highlighting those structural variations to help clini-

cians to detect TMJ OA earlier in disease progression.

In the test case (figure 2), the lower part of the condyle is healthy (normal bone trabeculae density) whereas

the upper part is characteristic of a TMJ OA case (low bone trabeculae density).

Figure 2: CBCT of the test condyle: this condyle suffers of a lack of trabecula in the upper part

The results exposed in this part were obtained by specifying the following parameters (the default parameters

were used for the other ones):

• Input data: Scan CBCT 13R.nrrd

• Input mask: SegmC CBCT 13R.nrrd

• Threshold: 1100

• Neighborhood Radius: 6

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3588]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3588
http://creativecommons.org/licenses/by/3.0/us/

13

Figure 3: BSBV (left) and BVTV (right)

Figure 4: TbN (left), TbSp (center) and TbTh (right)

All the different bone morphometry feature maps computed for this case (figure 3 and 4) seem to discrimi-

nate unaffected areas from affected areas in the TMJ trabecular bone. It is highly probable that those features

can help in an automatic detection of TM JOA.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3588]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3588
http://creativecommons.org/licenses/by/3.0/us/

14

6 Conclusion

This document presented a new, fast, and efficient tool to compute bone morphometry features in N-

Dimensional images. The described features are correlated to each other, so they do not provide independent

discrimination. The usage with a combination with other types of image feature descriptors (such as some

textural features[1]) will allow the detection of a larger number of disease variations. This method is cur-

rently used in conjunction with other biomarkers in a large study aimed to create a new method to detect

TMJ OA at early stages using subchondral bone structure as a biomarker.

Acknowledgements

This work was supported by the National Institute of Health (NIH) National Institute for Dental and Cranio-

facial Research (NIDCR) grant R01EB021391 (Textural Biomarkers of Arthritis for the Subchondral Bone

in the Temporomandibular Joint), NIDCR grant R01DE024450 (Quantification of 3D bony Changes in

Temporomandibular Joint Osteoarthritis) and National Institute of Biomedical Imaging and Bioengineering

(NIBIB) grant R01EB021391 (Shape Analysis Toolbox for Medical Image Computing Projects).

We would like to thank Dr. Larry Wolford from the Baylor University Medical Center for kindly providing

the bone specimens from which we obtained the scans used in the paper. We would like to thank Drs. Lucia

Cevidanes, Erika Benavides and Antonio Ruellas at the University of Michigan School of Dentistry as well,

for generating the CBCT scans that were processed with the filters presented in the paper.

We are also grateful for the support received from the ITK community.

References

[1] F. Budin B. Paniagua J. Vimort, M. McCormick. Computing textural feature maps for n-dimensional

images. Insight Journal, 2017. 6

[2] W. Jee. The past, present, and future of bone morphometry: its contribution to an improved understand-

ing of bone biology. Journal of Bone and Mineral Metabolism, 23(1):1–10, 2005. 1

[3] R. Müller R. Voide, G. van Lenthe. Bone morphometry strongly predicts cortical bone stiffness and

strength, but not toughness, in inbred mouse models of high and low bone mass. Journal of Bone and

Mineral Metabolism, 23(8):203, 2008. 1

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3588]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3588
http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	Bone Morphometry Features Available
	Filter Usage
	itk::BoneMorphometryFeaturesFilter
	itk::BoneMorphometryFeaturesImageFilter
	Recommendations
	Python Packages

	Practical examples
	C++
	itk::BoneMorphometryFeaturesFilter
	itk::BoneMorphometryFeaturesImageFilter

	Python
	itk.BoneMorphometryFeaturesFilter
	itk.BoneMorphometryFeaturesImageFilter

	Results
	Conclusion

