

CartesianToPolar and PolarToCartesian Image
Filters

Release 1.00

Bhavya Ajani1 and Sikander Sanjay Sharda2

April 09, 2019

1Samsung Research Institute, Bangalore

Abstract

In this paper, we describe a set of filters, implemented in the Insight Toolkit www.itk.org, for converting an image from

Cartesian co-ordinate space to Polar co-ordinate space and vice-versa. Cartesian to Polar conversion of an image is a useful

operation in preprocessing stage of certain image-processing algorithm where feature of interest has simplified representation in

the polar space. This paper is accompanied with the source code, input data, parameters and output data that the authors used for

validating the algorithm described in this paper. This adheres to the fundamental principle that scientific publications must facilitate

reproducibility of the reported results.

Contents

1 Implementation of Algorithm 2

2 Usage 2

3 Testing 4

4 Software Used 5

 2

Latest version available at the Insight Journal link http://hdl.handle.net/1926/1338

Distributed under Creative Commons Attribution License

1 Implementation of Algorithm

Cartesian to Polar co-ordinate conversion of an image is a useful pre-processing step in many image-

processing algorithms. This operation is also termed as unwarping, where an area of interest in an image is

un-warped around a given point and the resulting representation in polar space, which may be a simplified

representation, is useful in pattern recognition problems. Refer to Fig. 1 for an example of this operation.

A Cartesian to polar conversion of an image is an operation of mapping a point, per pixel, in a polar space

to the corresponding point in Cartesian space and interpolating the resulting pixel value through

interpolation in the neighborhood of the mapped point. The operation has 4 parameters: 1) “Center (cx,cy)”:

defines an origin point in the Cartesian space; 2) “Radius (𝑅)”: defines the physical extent of the polar

space along radial direction; 3) “Radial Sampling (Rn)”: defines the number of equi-spaced samples along

an extent [0 , R] in radial direction; 4) “Angular Sampling (An)”: defines the number of equi-spaced angular

sampling along [0 , 2π) angular space.

The buffer size of the output polar image is (An , Rn) with origin at (0 , 0) and spacing of (2π/ An , R/ Rn).

In this operation pixel value at each pixel location (𝜃, 𝑟) in polar image is obtained by mapping point (𝜃, 𝑟)

in polar space to (x, y) in Cartesian space using eq. 1 and interpolating the value.

𝑥 = 𝑐𝑥 + 𝑟𝑐𝑜𝑠(𝜃) , 𝑦 = 𝑐𝑦 + 𝑟𝑠𝑖𝑛(𝜃) (1)

𝑟 ∈ [0, 𝑅] 𝑖𝑛 𝑠𝑡𝑒𝑝𝑠 𝑜𝑓
𝑅

Rn
 & 𝜃 ∈ [0,2π)𝑖𝑛 𝑠𝑡𝑒𝑝𝑠 𝑜𝑓 2π/An

The Cartesian to polar conversion filter is accompanied by a companion inversion filter, to convert an image

in polar space to Cartesian space. This inverse operation first maps a pixel (x, y) in Cartesian space to the

corresponding pixel (𝜃, 𝑟) in polar space using equation (2). The pixel value at the pixel (x, y) is than

interpolated from the mapped point in polar space using interpolator.

𝑟 = √(𝑥 − 𝑐𝑥)2 + (𝑦 − 𝑐𝑦)2 , 𝜃 = {
 arccos (

(𝑥−𝑐𝑥)

𝑟
) 𝑦 ≥ 0

 2𝜋 − 𝑎𝑟𝑐𝑐𝑜𝑠 (
(𝑥−𝑐𝑥)

𝑟
) 𝑦 < 0

 (2)

Similarly, a point in Cartesian space (x, y) can be mapped to log-polar space (𝜃, ρ) and vice versa, using

equations (3) and (4) respectively, where ρ= log(r)

𝑥 = 𝑐𝑥 + 𝑒𝜌𝑐𝑜𝑠(𝜃) , 𝑦 = 𝑐𝑦 + 𝑒𝜌𝑠𝑖𝑛(𝜃) ρ ∈ [0, log(R)] 𝑖𝑛 𝑠𝑡𝑒𝑝𝑠 𝑜𝑓
log (R)

Rn
 & θ ∈ [0,2𝜋)𝑖𝑛 𝑠𝑡𝑒𝑝𝑠 𝑜𝑓 2𝜋/𝐴𝑛 (3)

ρ = log (√(𝑥 − 𝑐𝑥)2 + (𝑦 − 𝑐𝑦)2) , 𝜃 = {
 arccos (

(𝑥−𝑐𝑥)

𝑒𝜌) 𝑦 ≥ 0

 2𝜋 − 𝑎𝑟𝑐𝑐𝑜𝑠 (
(𝑥−𝑐𝑥)

𝑒𝜌) 𝑦 < 0
 (4)

http://www.insight-journal.org/
http://hdl.handle.net/1926/1338
http://creativecommons.org/licenses/by/3.0/us/

 3

Latest version available at the Insight Journal link http://hdl.handle.net/1926/1338

Distributed under Creative Commons Attribution License

2 Usage

The image filters are implemented as two classes: itk::CartesianImageToPolarImageFilter for conversion

of an image from Cartesian to polar space and itk::PolarImageToCartesianImageFilter for conversion of an

image from polar space to Cartesian space respectively. Both classes are templated over the scalar type of

image that will be transformed. Currently, both the filters work only for 2D images.

 itk::CartesianImageToPolarImageFilter :

This filter requires setting an input image (Cartesian space) through SetInput() and a center (physical point)

through SetCenter(). To set the radial extent ‘R’, use SetMaxRadius(). Output image size can be set using

the SetAngularSamples() and SetRadialSamples(). The interpolator can also be explicitly set by using the

SetInterpolator(). The interpolator defaults to itk::LinearInterpolatorImageFunction. To convert the

Cartesian image to log-polar space, use SetUseLogPolar(true). Example usage is shown below.

using CartesianToPolarFilterType = itk::CartesianImageToPolarImageFilter<ImageType>;
CartesianToPolarFilterType::Pointer cartToPolarFilter = CartesianToPolarFilterType::New();

using InterPolatorType = itk::NearestNeighborInterpolateImageFunction < ImageType, double > ;

InterPolatorType::Pointer interpolator = InterPolatorType::New();

cartToPolarFilter->SetInput(inCartImage);
cartToPolarFilter->SetCenter(centroidPhysicalPoint);
cartToPolarFilter->SetInterpolator(interpolator);
cartToPolarFilter->UpdateLargestPossibleRegion();

This filter can also transform Cartesian image to log-polar space :
cartToPolarFilter->SetUseLogPolar(true);

 itk::PolarImageToCartesianImageFilter :

This filter requires setting an input image (polar space) through SetPolarImage(), reference image

SetReferenceImage() (region in cartesian space) and a physical point SetCenter(). Output image is created

using the spacing, size, direction cosines and origin of the reference image. The interpolator can also be

explicitly set by using the SetInterpolator(). The interpolator defaults to

itk::LinearInterpolatorImageFunction. To convert an image in log-polar space to Cartesian space, use

SetUseLogPolar(true). Example usage is shown below.

http://www.insight-journal.org/
http://hdl.handle.net/1926/1338
http://creativecommons.org/licenses/by/3.0/us/

 4

Latest version available at the Insight Journal link http://hdl.handle.net/1926/1338

Distributed under Creative Commons Attribution License

using PolarToCartesianFilterType = itk:: PolarImageToCartesianImageFilter<ImageType>;
PolarToCartesianFilterType::Pointer polarToCartFilter = PolarToCartesianFilterType::New();

using InterPolatorType = itk::NearestNeighborInterpolateImageFunction < ImageType, double > ;

InterPolatorType::Pointer interpolator = InterPolatorType::New();

polarToCartFilter ->SetPolarImage(inPolarImage);
polarToCartFilter ->SetCenter(centroidPhysicalPoint);
polarToCartFilter->SetReferenceImage(refCartImage);
polarToCartFilter ->SetInterpolator(interpolator);
polarToCartFilter ->UpdateLargestPossibleRegion();

This filter can also transform from log Polar space to Cartesian space :
polarToCartFilter ->SetUseLogPolar(true);

3 Testing

The test code included with this article will generate images as in Figure 1 with the following arguments.

CartToPolar.exe cartesianInputImage.mhd

PolarToCart.exe polarInputImage.mha referenceCartesianImage.mhd

 (a) (c)

http://www.insight-journal.org/
http://hdl.handle.net/1926/1338
http://creativecommons.org/licenses/by/3.0/us/

 5

Latest version available at the Insight Journal link http://hdl.handle.net/1926/1338

Distributed under Creative Commons Attribution License

Figure 1: Example of Cartesian to Polar and Polar to Cartesian conversion of an image using defined

filters. (a) Is the original image in Cartesian space. (b) Is the unwrapped image in the polar space. (c) Is

the recovered image from polar space into original Cartesian space.

The newly generated Cartesian image was compared with the original using

itk::Testing::ComparisonImageFilter. The average mean pixel value difference between the

two images was found to be less than ‘5’.

4 Software Used

The filters were tested on a Windows 10 64-bit computer with ITK version 4.12 and CMake version 3.1

(b)

http://www.insight-journal.org/
http://hdl.handle.net/1926/1338
http://creativecommons.org/licenses/by/3.0/us/

