CartesianToPolar and PolarToCartesian Image
Filters

Release 1.00
Bhavya Ajani' and Sikander Sanjay Sharda?

April 09, 2019

'Samsung Research Institute, Bangalore

Abstract

In this paper, we describe a set of filters, implemented in the Insight Toolkit www.itk.org, for converting an image from
Cartesian co-ordinate space to Polar co-ordinate space and vice-versa. Cartesian to Polar conversion of an image is a useful
operation in preprocessing stage of certain image-processing algorithm where feature of interest has simplified representation in
the polar space. This paper is accompanied with the source code, input data, parameters and output data that the authors used for
validating the algorithm described in this paper. This adheres to the fundamental principle that scientific publications must facilitate
reproducibility of the reported results.

Contents

1 Implementation of Algorithm 2
2 Usage 2
3 Testing 4

4 Software Used 5




1 Implementation of Algorithm

Cartesian to Polar co-ordinate conversion of an image is a useful pre-processing step in many image-
processing algorithms. This operation is also termed as unwarping, where an area of interest in an image is
un-warped around a given point and the resulting representation in polar space, which may be a simplified
representation, is useful in pattern recognition problems. Refer to Fig. 1 for an example of this operation.

A Cartesian to polar conversion of an image is an operation of mapping a point, per pixel, in a polar space
to the corresponding point in Cartesian space and interpolating the resulting pixel value through
interpolation in the neighborhood of the mapped point. The operation has 4 parameters: 1) “Center (cx,cy)”:
defines an origin point in the Cartesian space; 2) “Radius (R)”: defines the physical extent of the polar
space along radial direction; 3) “Radial Sampling (Rn)”: defines the number of equi-spaced samples along
an extent [0, R] in radial direction; 4) “Angular Sampling (An)”: defines the number of equi-spaced angular
sampling along [0 , 27) angular space.

The buffer size of the output polar image is (An, Rn) with origin at (0, 0) and spacing of ( 21/ An, R/ Ry).
In this operation pixel value at each pixel location (8, r) in polar image is obtained by mapping point (6, )
in polar space to (x, y) in Cartesian space using eg. 1 and interpolating the value.

x=cx+ rcos(0), y =cy+ rsin(9) @
R
r € [0,R] in steps Ofﬁ & 6 € [0,2m)in steps of 2m/An

The Cartesian to polar conversion filter is accompanied by a companion inversion filter, to convert an image
in polar space to Cartesian space. This inverse operation first maps a pixel (x, y) in Cartesian space to the
corresponding pixel (6,r) in polar space using equation (2). The pixel value at the pixel (X, y) is than
interpolated from the mapped point in polar space using interpolator.

arccos ((x_r—cx)) y=0

r=J(x—cx)2+(y—cy)2,9={ )

21 — arccos ((x_r—cx)) y<0

Similarly, a point in Cartesian space (X, ¥) can be mapped to log-polar space (6, p) and vice versa, using
equations (3) and (4) respectively, where p=1log(r)

x=cx+ ePcos(0), y=cy+ ePsin(0) p€[0,log(R)] in steps of% &0 € [0,2m)in steps of 2m/An (3)

(x-en)

arccos ( o

y=0
(x—cx) (4)

27r—arccos( o ) y<0

p=logy/(x— )+ (y—c)®) 0 ={

Latest version available at the Insight Journal link http://hdl.handle.net/1926/1338
Distributed under Creative Commons Attribution License



http://www.insight-journal.org/
http://hdl.handle.net/1926/1338
http://creativecommons.org/licenses/by/3.0/us/

2 Usage

The image filters are implemented as two classes: itk::CartesianimageToPolarimageFilter for conversion
of an image from Cartesian to polar space and itk::PolarimageToCartesianlmageFilter for conversion of an
image from polar space to Cartesian space respectively. Both classes are templated over the scalar type of
image that will be transformed. Currently, both the filters work only for 2D images.

e itk::CartesianImageToPolarImageFilter :

This filter requires setting an input image (Cartesian space) through setInput() and a center (physical point)
through setcenter(). To set the radial extent ‘R’, use setMaxRadius(). Output image size can be set using
the setAngularsamples() and setRadialsamples(). The interpolator can also be explicitly set by using the
SetInterpolator(). The interpolator defaults to itk::LinearInterpolatorImageFunction. TO convert the
Cartesian image to log-polar space, use setUseLogPolar(true). Example usage is shown below.

using CartesianToPolarFilterType = itk::CartesianImageToPolarImageFilter<ImageType>;
CartesianToPolarFilterType::Pointer cartToPolarFilter = CartesianToPolarFilterType::New();

using InterPolatorType = itk::NearestNeighborInterpolateImageFunction < ImageType, double > ;
InterPolatorType::Pointer interpolator = InterPolatorType: :New();

cartToPolarFilter->SetInput(inCartImage);
cartToPolarFilter->SetCenter(centroidPhysicalPoint);
cartToPolarFilter->SetInterpolator(interpolator);
cartToPolarFilter->UpdatelLargestPossibleRegion();

This filter can also transform Cartesian image to log-polar space :
cartToPolarFilter->SetUselLogPolar(true);

e itk::PolarImageToCartesianImageFilter :

This filter requires setting an input image (polar space) through SetPolarImage(), reference image
setReferenceImage() (region in cartesian space) and a physical point SetCenter(). Output image is created
using the spacing, size, direction cosines and origin of the reference image. The interpolator can also be
explicitly set by using the  SetInterpolator(). The interpolator  defaults to
itk::LinearInterpolatorImageFunction. TO convert an image in log-polar space to Cartesian space, use
SetUseLogPolar(true). Example usage is shown below.

Latest version available at the Insight Journal link http://hdl.handle.net/1926/1338
Distributed under Creative Commons Attribution License



http://www.insight-journal.org/
http://hdl.handle.net/1926/1338
http://creativecommons.org/licenses/by/3.0/us/

using PolarToCartesianFilterType = itk:: PolarImageToCartesianImageFilter<ImageType>;
PolarToCartesianFilterType::Pointer polarToCartFilter = PolarToCartesianFilterType::New();

using InterPolatorType = itk::NearestNeighborInterpolateImageFunction < ImageType, double > ;
InterPolatorType::Pointer interpolator = InterPolatorType::New();

polarToCartFilter ->SetPolarImage(inPolarImage);

polarToCartFilter ->SetCenter(centroidPhysicalPoint);
polarToCartFilter->SetReferenceImage(refCartImage);

polarToCartFilter ->SetInterpolator(interpolator);

polarToCartFilter ->UpdateLargestPossibleRegion();

This filter can also transform from log Polar space to Cartesian space :
polarToCartFilter ->SetUselLogPolar(true);

3 Testing

The test code included with this article will generate images as in Figure 1 with the following arguments.

CartToPolar.exe cartesianInputImage.mhd

PolarToCart.exe polarInputImage.mha referenceCartesianImage.mhd

Latest version available at the Insight Journal link http://hdl.handle.net/1926/1338
Distributed under Creative Commons Attribution License



http://www.insight-journal.org/
http://hdl.handle.net/1926/1338
http://creativecommons.org/licenses/by/3.0/us/

Ve TR a1 B, |
RITTNRLTTN IO e oo s &

( i il 1B 1] "I*'ﬁﬁrlhmy'
i ””L“ ! L LT

v all UL R T

—"“4.“ S S

‘‘‘‘‘‘

(b)

Figure 1: Example of Cartesian to Polar and Polar to Cartesian conversion of an image using defined
filters. (a) Is the original image in Cartesian space. (b) Is the unwrapped image in the polar space. (c) Is
the recovered image from polar space into original Cartesian space.

The newly generated Cartesian image was compared with the original using
itk::Testing: :ComparisonImageFilter. The average mean pixel value difference between the
two images was found to be less than ‘5°.

4  Software Used

The filters were tested on a Windows 10 64-bit computer with ITK version 4.12 and CMake version 3.1

Latest version available at the Insight Journal link http://hdl.handle.net/1926/1338
Distributed under Creative Commons Attribution License



http://www.insight-journal.org/
http://hdl.handle.net/1926/1338
http://creativecommons.org/licenses/by/3.0/us/

