Abstract
Diffusion tensor imaging has become an important research and clinical tool, owing to its unique ability to infer microstructural properties of living tissue. Increased use has led to a demand for statistical tools to analyze diffusion tensor data and perform, for example, confidence estimates, ROI analysis, and group comparisons. A first step towards developing a statistical framework is establishing the basic notion of distance between tensors. We investigate the properties of two previously proposed metrics that define a Riemannian manifold: the affine-invariant and Euclidean metrics. We find that the Euclidean metric is more appropriate for intra-voxel comparisons, and suggest that a context-dependent metric may be required for inter-voxel comparisons.
Keywords
Source Code and Data
No source code files available for this publication.
