Automated Brain-Tissue Segmentation by Multi-Feature SVM Classification

Van Opbroek, Annegreet1*,Van der Lijn, Fedde,De Bruijne, Marleen
1.Erasmus MC
Abstract

Abstract

We present a method for automated brain-tissue segmentation through voxelwise classification. Our algorithm uses manually labeled training images to train a support vector machine (SVM) classifier, which is then used for the segmentation of target images. The classification incorporates voxel intensities from a T1-weighted scan, an IR scan, and a FLAIR scan; features to encode the voxel position in the image; and Gaussian-scale-space features and Gaussian-derivative features at multiple scales to facilitate a smooth segmentation. An experiment on data from the MRBrainS13 brain-tissue-segmentation challenge showed that our algorithm produces reasonable segmentations in a reasonable amount of time.

Keywords

SegmentationPattern RecognitionClassificationMachine LearningMRIBrain
Manuscript
Source Code and Data

Source Code and Data

No source code files available for this publication.