Abstract
In this work, we try to develop a fast converging method for segmentation assisted deformable registration. The segmentation step consists of a piece-wise constant Mumford-Shah energy model while reg- istration is driven by the sum of squared distances of both initial images and segmented mask with a diffusion regularization. In order to solve this energy minimization problem, a second order Gauss-Newton opti- mization method is used. For the numerical experiments we used CT data sets from the EMPIRE10 challenge. In this preliminary study, we show high accuracy of our algorithm.
Keywords
Source Code and Data
No source code files available for this publication.
