Abstract
A multi-atlas approach is proposed for the automatic segmentation of nine different structures in a set of head and neck CT images for radiotherapy. The approach takes advantage of a training dataset of 25 images to build average head and neck atlases of high-quality. By registering patient images with the atlases at the global level, structures of interest are aligned approximately in space, which allowed multi-atlas-based segmentations and correlation-based label fusion to be performed at the local level in the following steps. Qualitative and quantitative evaluations are performed on a set of 15 testing images. As shown by the results, mandible, brainstem and parotid glands are segmented accurately (mean volume DSC>0.8). The segmentation accuracy for the optic nerves is also improved over previously reported results (mean DSC above 0.61 compared with 0.52 for previous results).
Keywords
Source Code and Data
No source code files available for this publication.
